
F300 Visual Inspection System
OMRON Vision Language (OVL)

Reference Manual

Revised March 1994

iv

v

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to head precautions can result in injury to people or dam-
age to the product.

DANGER! Indicates information that, if not heeded, is likely to result in loss of life or serious
injury.

WARNING Indicates information that, if not heeded, could possibly result in loss of life or
serious injury.

Caution Indicates information that, if not heeded, could result in relative serious or minor
injury, damage to the product, or faulty operation.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “PLC” means Programmable Controller (Programmable Logic Controller) and is not
used as an abbreviation for anything else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 1992
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

vi

vii

TABLE OF CONTENTS

PART I, Version 1.00

SECTION 1
List of Commands and Functions 1.

1-1 OVL Alphabetical List 2.
1-2 OVL Instruction List 11.

SECTION 2
OVL Syntax 19.

2-1 Line Format 20.
2-2 OVL Characters and Symbols 20.
2-3 Constants 21.
2-4 Variables 23.
2-5 Type Conversion 25.
2-6 Operations and Expressions 27.
2-7 Interrupts 32.
2-8 Labels 32.

SECTION 3
Screen Operations 35.

3-1 Flow of Image Data 36.
3-2 Display and Measurement Block Diagrams 40.
3-3 Flow of Measured Data 41.
3-4 Plane and Frame Memory 43.
3-5 Windows 44.
3-6 Drawing Density and Drawing Modes 46.
3-7 Run Length 47.
3-8 Labelling 48.
3-9 Scrolling 49.
3-10 Fill Measurement 50.
3-11 Image Cut-off 50.
3-12 Scan Measurement 51.

SECTION 4
Reference 53.

viii

PART II, Version 2.00

SECTION 1
OVL Version 2.00 Improvements 169.

1-1 Overview of Improvements 170.
1-2 Additional OVL Capabilities 172.

SECTION 2
Reference 183.

SECTION 3
Sample Programs 203.

3-1 Determination of Multiple Windows’ ON/OFF Status 204.
3-2 Shape Inspection using Window Enlargement/Reduction 208.

Appendices 213.
A. Table of Error Messages 213.
B. Reserved Words 215.
C. Induction Functions 217.

Index 219.

Revision History 229.

ix

About this Manual:

This manual describes the OMRON Vision Language (OVL) used with the F300 Visual Inspection System
and includes the sections described below.

Please read this manual completely and be sure you understand the information provided before attempt-
ing to operate the F300 Visual Inspection System and use the OVL.

PART I
Version 1.00

Section 1 provides a listing of commands and functions. There is a list ordered alphabetically and a list
ordered by instructions.

Section 2 provides the basic OVL syntax required before programming.

Section 3 provides general information on screen manipulation.

Section 4 provides detailed information on the commands and functions. Examples are also provided.

PART II
Version 2.00

Section 1 describes the additional functions and improvements found in OVL Version 2.00.

Section 2 provides detailed information on the new Version 2.00 commands and functions. Examples are
also provided.

Section 3 provides sample programs using the new Version 2.00 commands and functions.

This manual also contains three appendices. Appendix A contains a listing of error messages, Appen-
dix B contains a listing of reserved words, and Appendix C contains a listing of induction functions.

WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

1

PART I
Version 1.00

SECTION 1
List of Commands and Functions

This section provides a listing of commands and functions. There is a list ordered alphabetically and a list ordered by usage.

1-1 OVL Alphabetical List 2.
1-2 OVL Instruction List 11.

2

1-1 OVL Alphabetical List

Command/Function Operation Instruction Type Page

ABS Determines an absolute value. Calculation Function 54

AKCNV$ Converts 1-byte characters to 2-byte
characters.

Japanese character string
operation

Function 54

ARC Draws an arc. Graphic control Command 54

A ASC Determines the character code. 1-byte character string
operation

Function 55

ATN Determines the arctangent (arctan) of a
value.

Calculation Function 55

ATTR$ Determines the write protect attribute of a
file.

File control Function 55

AUTO Automatically generates line numbers. Program editing Command 56

AUTOLVL Determines the binary level. Image processing Function 56

BACKDISP Sets the image display outside the
window.

Display control Command 56

BCOPY Copies a binary image. Special graphic display
control

Command 57

B BCOPY2 Makes enlarged and reduced copies of
binary images.

Special graphic display
control

Command 58

BEEP Turns the buzzer on and off. Special Command 58

BOX Draws a rectangle. Graphic control Command 59

BUSY Controls BUSY signal output status. I/O port I/O control Command 59

CALL Calls a structural subroutine. General Command 60

CAMCHK Determines the camera connection status. Camera/strobe control Function 60

CAMERA Switches cameras. Camera/strobe control Command 60

CAMMODE Selects the image output from a Camera
I/F Unit.

Camera/strobe control Command 60

CDBL Converts to a double-precision value. Calculation Function 61

CHAIN Transfers control to a specified program. General Command 61

CHANGE Changes the measuring conditions. Scene Command 62

C CHDIR Changes the current directory. File operation Command 62

CHR$ Converts a character code to a character. 1-byte character string op-
eration

Function 63

CINT Converts to an integer. Calculation Function 63

CIRCLE Draws a circle. Graphic control Command 64

CLEAR Initializes variables. Memory management Command 65

CLNG Converts to a long integer. Calculation Function 65

CLOSE Closes an open file. File control Command 65

CLS Clears characters and graphics. Graphic control Command 66

COLOR Changes the character attributes. Text display control Command 66

COLOR@ Changes the character attributes within a
specified region.

Text display control Command 66

COM ON/OFF/
STOP

Controls interrupts from the RS-232C. RS-232C communication Command 67

COMMON Transfers variables. General Command 67

CONSOLE Sets the text display mode. Text display control Command 68

OVL Alphabetical List Section 1-1

3

Command/Function PageTypeInstructionOperation

CONT Continues execution of a program. Program execution control Command 68

COS Determines the cosine of an angle. Calculation Function 69

CSNG Converts to a single-precision value. Calculation Function 69

CSRLIN Determines the cursor line position. Text display control Function 69

C CURSOR Draws a cross cursor. Graphic control Command 69

CVD Converts an 8-byte character string to a
double-precision real number.

Calculation Function 70

CVI Converts a 2-byte character string to an
integer.

Calculation Function 71

CVL Converts a 4-byte character string to a
long integer.

Calculation Function 71

CVS Converts a 4-byte character string to a
single-precision real number.

Calculation Function 71

DATA Defines the data read with the READ com-
mand.

General Command 72

DATE$ Displays and sets the date. Time/date control Function,
Command

73

DEF FN Defines a user function. General Command 73

DEF FN
END DEF

Defines a user function block. General Command 74

DEFDBL Declares variables as double-precision
real number variables.

General Command 74

DEFINT Declares variables as integers. General Command 74

DEFLNG Declares variables as long integers. General Command 75

DEFSNG Declares variables as single-precision real
number variables.

General Command 75

DEFSTR Declares variables as character variables. General Command 75

D DELETE Deletes part of a program. Program editing Command 76

DEVICE Specifies the input and output devices. Special Command 76

DIM Defines an array variable. General Command 76

DIN Reads data from an input port. I/O port I/O control Function 77

DISPLAY Sets the display image. Display control Command 77

DO. . . LOOP
REPEAT

Repeats a loop specified number of times. General Command 78

DO. . . LOOP
UNTIL

Repeats a loop until a condition is fulfilled. General Command 78

DO. . . LOOP
WHILE

Repeats a loop while a condition is
fulfilled.

General Command 79

DO
REPEAT LOOP

Repeats a loop specified number of times. General Command 79

DO
UNTIL LOOP

Repeats a loop until a condition is fulfilled. General Command 80

DO
WHILE LOOP

Repeats a loop while a condition is
fulfilled.

General Command 80

DOUT Outputs data to an output port. I/O port I/O control Command 80

DSA Reads the status of the DSA signal. I/O port I/O control Function 81

DSKF Determines the free space in the memory
card.

File control Function 81

OVL Alphabetical List Section 1-1

4

Command/Function PageTypeInstructionOperation

EDIT Selects the mode to edit lines of the
program.

Program editing Command 81

ELLIPSE Draws an ellipse. Graphic control Command 82

END Stops program execution. General Command 82

ENHANCE Creates LUT data for contrast
modification.

Image processing Command 83

EOF Determines the end of the file. File control Function 83

ERASE Deletes an array variable. General Command 83

E ERL Determines the line number where an
error occurred.

Error control Function 84

ERR Determines the error code. Error control Function 84

ERRMSG Defines the operation when an error
occurs.

Error control Command 84

ERROR Generates a pseudo-error. Error control Command 84

ERROUT Controls the error signal output. I/O port I/O control Command 85

EVENTIN Sets the image input synchronized with
events.

Camera/strobe control Command 85

EXIT DEF/
DO/FOR/SUB

Exits a control block. General General 86

EXP Determines the natural number e raised to
an exponential power.

Calculation Function 87

FIELD# Allocates the variable areas. File control Command 87

FILES Displays file names. File operation Command 88

FILTDATA Specifies the line filter factors. Image processing Command 88

FILTER Sets the image filtering function. Image processing Command 88

FILTERIN Selects image input to the filter. Image processing Command 89

FIND Searches for a character string in a
program.

Program editing Command 89

F FIX Rounds down a value to an integer. Calculation Function 90

FLASH Controls the strobe and shutter function. Camera/strobe control Command 90

FOR. . . TO. . .
STEP ~ NEXT

Repeatedly executes instructions. General Command 91

FRE Determines the free memory size. Memory management Function 91

GATE Controls the GATE signal. I/O port I/O control Command 91

GCOPY Copies the raw image in VRAM. Special graphic display
control

Command 92

GCOPY2 Makes enlarged and reduced copies of the
raw image.

Special graphic display
control

Command 92

GET# Reads data from a random file. File control Command 93

GET@ Reads image data to VRAM. Graphic control Command 93

G GETBLUT Reads the binary LUT data. Image processing Command 94

GETDLUT Reads the display LUT data. Display control Command 94

GETDLVL Determines the display level of the image. Display control Function 95

GETLUT Reads the filter LUT data. Image processing Command 95

GOSUB Branches to a specified subroutine. General Command 95

GOTO/GO TO Unconditionally jumps to a specified line. General Command 96

OVL Alphabetical List Section 1-1

5

Command/Function PageTypeInstructionOperation

HELP Displays help messages. Program editing Command 96

H HELP
ON/OFF/STOP

Disables, enables, or stops interrupts from
the HELP Key.

Key control Command 96

HEX$ Converts a numeric expression to
hexadecimal.

1-byte character string op-
eration

Function 97

HISTGRAM Reads a density histogram. Image processing Command 97

IF. . . GOTO ~
ELSE

Evaluates a condition. General Command 98

IF. . . THEN ~
ELSE

Evaluates a condition. General Command 98

IF. . . THEN ~
ELSEIF ~ ELSE
~ END IF

Evaluates a condition. General Command 99

IMGLOAD Loads image data to VRAM. Special Command 99

IMGSAVE Saves image data from VRAM. Special Command 100

INKEY$ Determines the character input from the
keyboard.

Key control Function 100

I INPUT Assigns data to a variable. Key control Command 101

INPUT# Reads data from a file. File control Command 101

INPUT$ Reads a specified length of data. File control Function 102

INPUT WAIT Inputs data with a time limitation. Key control Command 102

INSTR Determines the position of a specified
character.

1-byte character string
operation

Function 103

INT Rounds down a value to an integer. Calculation Function 103

INTR
ON/OFF/STOP

Disables, enables, or stops interrupts with
the STEP signal.

I/O port I/O control Command 104

IPL Sets the OVL boot-up mode. Special Command 104

J JIS$ Determines the Shift JIS code. Japanese character string
operation

Function 105

KACNV$ Converts from wide to standard
characters.

Japanese character string
operation

Function 105

KEXT$ Selects a character. Japanese character string
operation

Function 105

KEY Assigns a character string to function
keys.

Key control Command 106

KEY LIST Displays the function key settings. Program editing Command 106

K KEY
ON/OFF/STOP

Disables, enables, or stops interrupts from
the function keys.

Key control Command 106

KEYIN Reads the status of the console keys. Key control Function 107

KILL Deletes a file. File operation Command 107

KINPUT Input data in the Japanese input mode. Key control Command 108

KINSTR Determines the position of a 2-byte
character.

Japanese character string
operation

Function 108

KLEN Determines the length of a character string
including 2-byte characters.

Japanese character string
operation

Function 108

KMID$ Extracts part of a character string
including 2-byte characters.

Japanese character string
operation

Function 109

KNJ$ Determines a 2-byte character. Japanese character string
operation

Function 109

OVL Alphabetical List Section 1-1

6

Command/Function PageTypeInstructionOperation

KPLOAD Registers a 2-byte character pattern. Japanese character string
operation

Command 110

K KPOS Determines the position of a character in a
character string.

Japanese character string
operation

Function 110

KTYPE Determines the type of a character. Japanese character string
operation

Function 111

LABEL Carries out labelling. Measurement Command 111

LBOUND Determines the lower boundary of an
array dimension qualifier.

General Function 112

LCASE$ Converts uppercase letters to-lower case
letters.

1-byte character string
operation

Function 112

LDATA Measures data for the labelled image. Measurement Function 112

LEFT$ Extracts the left end of the specified
character string.

1-byte character string
operation

Function 113

LEN Determines the length of a character
string.

1-byte character string
operation

Function 113

LET Assigns an expression to a variable. General Command 113

LEVEL Sets the binary level. Image processing Command 114

LINE Draws a straight line. Graphic control Command 114

LINE INPUT Assigns a line of data to a character
variable.

Key control Command 115

L LINE INPUT
WAIT

Inputs data with a time limitation. Key control Command 116

LINE INPUT# Reads data from a file. File control Command 116

LIST Displays the program contents. Program editing Command 116

LNUM Determines the number of labelled
images.

Measurement Function 117

LOAD Loads a program. Program editing Command 117

LOC Determines the current position in a
specified file.

File control Function 117

LOCATE Sets the cursor position. Text display control Command 118

LOF Determines the size of a file. File control Function 118

LOG Determines natural logarithms. Calculation Function 118

LPOINT Determines the label number at a
specified position.

Measurement Function 119

LPUTIMG Draws a labelled image. Measurement Command 119

LSET Writes left-justified character data. File control Command 120

LSORT Renumbers labels in order of area. Measurement Command 120

LTRIM$ Deletes spaces to the left of a character
string.

1-byte character string
operation

Function 120

MASKBIT Disables writing to specific planes. Special graphic display
control

Command 120

MDATA Reads the measured results 1. Measurement Function 121

M MDATA2 Reads the measured results 1. Measurement Function 121

MEASURE Conducts measurements. Measurement Command 122

MENU Returns to the Menu mode. Special Command 122

MERGE Merges a program. Program editing Command 122

OVL Alphabetical List Section 1-1

7

Command/Function PageTypeInstructionOperation

MID$ Extracts part of a character string. 1-byte character string
operation

Function,
Command

123

MKD$ Converts a double-precision value to a
character string.

1-byte character string
operation

Function 123

MKDIR Creates a new directory. File operation Command 124

MKI$ Converts an integer to a character string. 1-byte character string
operation

Function 124

M MKL$ Converts a long integer to a character
string.

1-byte character string
operation

Function 124

MKS$ Converts a single-precision value to a
character string.

1-byte character string
operation

Function 125

MMODE Sets the measurement mode. Measurement Command 125

NAME Renames files. File operations Command 126

N NEW Deletes a program from memory. Program execution control Command 126

NPIECE Determines the number of smaller
character strings.

1-byte character string
operation

Function 126

OCT$ Converts a number to an octal character
string.

1-byte character string
operation

Function 127

ON COM GO-
SUB

Defines the RS-232C interrupt jump
destination.

RS-232C communication Command 127

ON ERROR
GOTO

Defines the error processing routine. Error control Command 128

ON HELP GO-
SUB

Defines the HELP Key interrupt
subroutine.

Key control Command 128

ON INTR GO-
SUB

Defines the STEP signal interrupt
subroutine.

I/O port I/O control Command 128

O ON KEY GO-
SUB

Defines the function key interrupt
subroutine.

Key control Command 129

ON STOP GO-
SUB

Defines the STOP Key interrupt
subroutine.

Key control Command 129

ON TIME$ GO-
SUB

Defines the timer interrupt subroutine. Time/date control Command 130

ON. . . GOSUB Branches to a subroutine on a specified
value.

General Command 130

ON. . . GOTO Jumps program operation on a specified
value.

General Command 131

OPEN (1) Opens a file. File control Command 131

OPEN (2) Opens the RS-232C port. RS-232C communication Command 132

OPTION BASE Declares minimum value of the array
qualifier.

General Command 132

PIECE$ Returns partial character strings. 1-byte character string
operation

Function 133

PIN Reads the bit status of an input port. I/O port I/O control Function 133

P POINT Determines the density at specified
coordinates.

Graphic control Function 133

POLYGON Draws a polygon. Graphic control Command 134

POLYLINE Draws a polyline. Graphic control Command 134

POS Determines the current cursor column
position.

Text display control Function 135

POUT Controls the bit status of an output port. I/O port I/O control Command 135

OVL Alphabetical List Section 1-1

8

Command/Function PageTypeInstructionOperation

PRINT Displays data on the text display. Text display control Command 135

PRINT USING Displays formatted data on the text
display.

Text display control Command 136

P PRINT# Writes data to a sequential access file. File control Command 137

PRINT# USING Writes formatted data to a sequential
access file.

File control Command 138

PSET Draws a point. Graphic control Command 138

PUT# Writes data to a random access file. File control Command 139

PUT@ Draws a pattern in VRAM. Graphic control Command 139

RANDOMIZE Initializes random number generation. General Command 140

RDATA Reads the detailed run length data. Measurement Function 140

READ Reads data. General Command 140

R REM Inserts remarks into the program. General Command 141

RENUM Renumbers program lines. Program editing Command 141

REPLACE Replaces a character string. Program editing Command 141

RESTORE Specifies the line with the DATA
statement.

General Command 142

RESUME Restarts the operation before the error
occurred.

Error control Command 142

RETURN Returns operation from a subroutine. General Command 142

RIGHT$ Extracts the right end of the specified
character string.

1-byte character string
operation

Function 143

RMDIR Deletes a directory. File operation Command 143

RMODE Sets the measurement mode for detailed
run length data.

Measurement Command 144

RND Generates a random number. Calculation Function 144

RSET Writes right-justified character data. File control Command 145

RTRIM$ Deletes spaces to the right of a character
string.

1-byte character string
operation

Function 145

RUN Runs a program. Program execution control Command 145

RUNL Reads the simple run length data. Measurement Function 146

SAVE Saves a program. Program editing Command 146

SBANK Selects the shading memory bank
number.

Special graphic display
control

Command 146

SCAN Conducts scan measurement. Measurement Command 147

SCANSET Sets the conditions for scan
measurement.

Measurement Command 147

S SCNCALIB Sets the calibration data. Scene Command 148

SCNCAM Reads the camera data for a scene. Scene Function 148

SCNLEVEL Determines the binary level of a scene. Scene layout problem Function 148

SCNLOAD Loads the scene data. Scene Command 149

SCNLUT Sets the binary level of a scene. Scene Command 149

SCNSAVE Saves the scene data. Scene Command 149

SDATA 1 Reads the scan measurement data 1. Measurement Function 149

SDATA 2 Reads the scan measurement data 2. Measurement Function 150

OVL Alphabetical List Section 1-1

9

Command/Function PageTypeInstructionOperation

SEARCH Determines the number of an element in
an array.

General Function 150

SELECT... CASE
~ CASEELSE ~
END SELECT

Provides multiple branching depending on
a value.

General Command 151

SET Sets the write-protect attribute for a file. File operation Command 151

SETBLUT Sets array data as binary LUT data. Image processing Command 152

SETDLUT Sets the display LUT data. Display control Command 152

SETDLVL Sets the display level for each display
image.

Display control Command 153

SETLUT Sets array data as the filter LUT data. Image processing Command 153

SFTBLUT Shifts the binary LUT level. Image processing Command 153

S SFTLUT Shifts the filter LUT. Image processing Command 154

SGN Determines the sign of a numeric
expression.

Calculation Function 155

SIN Determines the sine of a numeric
expression.

Calculation Function 155

SPACE$ Inserts space characters. 1-byte character string
operation/key control

Function 156

SPC Outputs space characters. Text display control/key
control

Function 156

SPCLOSE Draws a region bounded by a spline
curve.

Graphic control Command 157

SPLINE Draws a spline curve. Graphic control Command 157

SQR Determines the square-root. Calculation Function 158

SSCROLL Scrolls the shading master memory. Special graphic display
control

Command 158

STOP Stops program execution. General Command 158

STOP
ON/OFF/STOP

Disables, enables, or stops interrupts from
the STOP Key.

Key control Command 159

STR$ Converts a number to character string
representation.

1-byte character string
operation

Function 159

STRCHK Checks for incorrect strobe flashing. Camera/strobe control Function 160

STRING$ Creates a character string with a repeated
character.

1-byte character string
operation

Function 160

STRMODE Enables and disables strobe flashing. Camera/strobe control Command 160

SUB ~ END SUB Defines a structural subroutine. General Command 161

SWAP Switches two variables. General Command 161

TAB Specifies the position to display
characters.

Text display control Function 161

TAN Determines the tangent of a numeric
expression.

Calculation Function 162

TIME$ Displays and sets the time. Time/date control Function,
Command

162

T TIME$
ON/OFF/STOP

Disables, enables, or stops timer
interrupts.

Time/date control Command 163

TIMER Reads and sets the 10 ms timer. Time/date control Function,
Command

163

TROFF Exits the Trace mode. Program execution control Command 164

OVL Alphabetical List Section 1-1

10

Command/Function PageTypeInstructionOperation

T TRON Enters the Trace mode. Program execution control Command 164

U UBOUND Determines the upper boundary of an
array dimension qualifier.

General Function 164

UCASE$ Converts lowercase letters to uppercase
letters.

1-byte character string
operation

Function 164

VAL Converts a character string to a number. 1-byte character string
operation

Function 165

V VDWAIT Delays the VD interrupt the specified
number of times.

Special graphic display
control

Command 165

VIDEOIN Inputs an image. Camera/strobe control Command 165

WDISP Sets the type of image display in a win-
dow.

Display control Command 166

WHILE ~ WEND Repeatedly executes instructions. General Command 166

W WINDOW Draws a window. Scene Command 167

WRITE Displays data on the display. Text display control Command 167

WRITE# Writes data to a sequential file. File control Command 168

WSCROLL Scrolls the window memory. Special graphic display
control

Command 168

OVL Alphabetical List Section 1-1

11

1-2 OVL Instruction List

Instruction Command/Function Operation Page

Program editing Command AUTO Automatically generates line numbers. 56g g

DELETE Deletes part of a program. 76

EDIT Selects the mode to edit lines of the
program.

81

FIND Searches for a character string in a
program.

89

HELP Displays help messages. 96

KEY LIST Displays the function key settings. 106

LIST Displays the program contents. 116

LOAD Loads a program. 117

MERGE Merges a program. 122

RENUM Renumbers program lines. 141

REPLACE Replaces a character string. 141

SAVE Saves a program. 146

Program
ti t l

Command CONT Continues execution of a program. 68g
execution control

NEW Deletes a program from memory. 126

RUN Runs a program. 145

TROFF Exits the Trace mode. 164

TRON Enters the Trace mode. 164

File operation Command CHDIR Changes the current directory. 62p

FILES Displays file names. 88

KILL Deletes a file. 107

MKDIR Creates a new directory. 124

NAME Renames files. 126

RMDIR Deletes a directory. 143

SET Sets the write-protect attribute for a file. 151

General Command CALL Calls a structural subroutine. 60

CHAIN Transfers control to a specified program. 61

COMMON Transfers variables. 67

DATA Defines the data read with the READ
instruction.

72

DEF FN Defines a user function. 73

DEF FN ~ END DEF Defines a user function block. 74

DEFDBL Declares variables as double-precision
real number variables.

74

DEFINT Declares variables as integers. 74

DEFLNG Declares variables as long integers. 75

DEFSNG Declares variables as single-precision
real number variables.

75

DEFSTR Declares variables as character variables. 75

DIM Defines an array variable. 76

DO. . . LOOP REPEAT Repeats a loop specified number of times. 78

DO. . . LOOP UNTIL Repeats a loop until a condition is fulfilled. 78

OVL Instruction List Section 1-2

12

Instruction PageOperationCommand/Function

General Command DO. . . LOOP WHILE Repeats a loop while a condition is
fulfilled.

79

DO REPEAT LOOP Repeats a loop specified number of times. 79

DO UNTIL LOOP Repeats a loop until a condition is fulfilled. 80

DO WHILE LOOP Repeats a loop while a condition is
fulfilled.

80

END Stops program execution. 82

ERASE Deletes an array variable. 83

EXIT DEF/DO/FOR/SUB Exits a control block. 86

FOR. . . TO. . . STEP ~ NEXT Repeatedly executes instructions. 91

GOSUB Branches to a specified subroutine. 95

GOTO/GO TO Unconditionally jumps to a specified line. 96

IF. . . GOTO ~ ELSE Evaluates a condition. 98

IF. . . THEN ~ ELSE Evaluates a condition. 98

IF. . . THEN ~ ELSEIF ~ ELSE ~
END IF

Evaluates a condition. 99

LET Assigns an expression to a variable. 113

ON. . . GOSUB Branches to a subroutine on a specified
value.

130

ON. . . GOTO Jumps program operation on a specified
value.

131

OPTION BASE Declares minimum value of the array
qualifier.

132

RANDOMIZE Initializes random number generation. 140

READ Reads data. 140

REM Inserts remarks into the program. 141

RESTORE Specifies the line with the DATA
statement.

142

RETURN Returns operation from a subroutine. 142

SELECT... CASE ~ CASEELSE
~ END SELECT

Provides multiple branching depending on
a value.

151

STOP Stops program execution. 158

SUB ~ END SUB Defines a structural subroutine. 161

SWAP Switches two variables. 161

WHILE ~ WEND Key control 166

Function DATE$ Displays and sets the date. 73

LBOUND Determines the lower boundary of an
array dimension qualifier.

112

SEARCH Determines the number of an element in
an array.

150

UBOUND Determines the upper boundary of an
array dimension qualifier.

164

Text display Command COLOR Changes the character attributes. 66p y

COLOR@ Changes the character attributes within a
specified region.

66

CONSOLE Sets the text display mode. 68

OVL Instruction List Section 1-2

13

Instruction PageOperationCommand/Function

Text display Command LOCATE Sets the cursor position. 118p y

PRINT Displays data on the text display. 135

PRINT USING Displays formatted data on the text
display.

136

WRITE Camera/strobe control 167

Function CSRLIN Determines the cursor line position. 69

POS Determines the current cursor column
position.

135

SPC Outputs space characters. 156

TAB Specifies the position to display
characters.

161

Graphic control Command ARC Draws an arc. 54p

BOX Draws a rectangle. 59

CIRCLE Draws a circle. 64

CLS Clears characters and graphics. 66

CURSOR Draws a cross cursor. 69

ELLIPSE Draws an ellipse. 82

GET@ Reads image data to VRAM. 93

LINE Draws a straight line. 114

POLYGON Draws a polygon. 134

POLYLINE Draws a polyline. 134

PSET Draws a point. 138

PUT@ Draws a pattern in VRAM. 139

SPCLOSE Draws a region bounded by a spline
curve.

157

SPLINE Draws a spline curve. 157

Function POINT Determines the density at specified
coordinates.

133

Special graphic
di l t l

Command BCOPY Copies a binary image. 57p g p
display control

BCOPY2 Makes enlarged and reduced copies of
binary images.

58

GCOPY Copies the raw image in VRAM. 92

GCOPY2 Makes enlarged and reduced copies of
the raw image.

92

MASKBIT Disables writing to specific planes. 120

SBANK Selects the shading memory bank
number.

146

SSCROLL Scrolls the shading master memory. 158

VDWAIT Delays the VD interrupt the specified
number of times.

165

WSCROLL Camera/strobe control 168

Calculation Function ABS Determines an absolute value. 54

ATN Determines the arctangent (arctan) of a
value.

55

CDBL Converts to a double-precision value. 61

CINT Converts to an integer. 63

OVL Instruction List Section 1-2

14

Instruction PageOperationCommand/Function

Calculation Function CLNG Converts to a long integer. 65

COS Determines the cosine of an angle. 69

CSNG Converts to a single-precision value. 69

CVD Converts an 8-byte character string to a
double-precision real number.

70

CVI Converts a 2-byte character string to an
integer.

71

CVL Converts a 4-byte character string to a
long integer.

71

CVS Converts a 4-byte character string to a
single-precision real number.

71

EXP Determines the natural number e raised
to an exponential power.

87

FIX Rounds down a value to an integer. 90

INT Rounds down a value to an integer. 103

LOG Determines natural logarithms. 118

RND Generates a random number. 144

SGN Determines the sign of a numeric
expression.

155

SIN Determines the sine of a numeric
expression.

155

SQR Determines the square-root. 158

TAN Determines the tangent of a numeric
expression.

162

Error control Command ERRMSG Defines the operation when an error
occurs.

84

ERROR Generates a pseudo-error. 84

ON ERROR GOTO Defines the error processing routine. 128

RESUME Restarts the operation before the error
occurred.

142

Function ERL Determines the line number where an
error occurred.

84

ERR Determines the error code. 84

1-byte character
t i ti

Command MID$ Extracts part of a character string. 123y
string operation

Function ASC Determines the character code. 55

CHR$ Converts a character code to a character. 63

HEX$ Converts a numeric expression to
hexadecimal.

97

INSTR Determines the position of a specified
character.

103

LCASE$ Converts uppercase letters to-lower case
letters.

112

LEFT$ Extracts the left end of the specified
character string.

113

LEN Determines the length of a character
string.

113

LTRIM$ Deletes spaces to the left of a character
string.

120

MID$ Extracts part of a character string. 123

OVL Instruction List Section 1-2

15

Instruction PageOperationCommand/Function

1-byte character
string operation

Function MKD$ Converts a double-precision value to a
character string.

123
g p

MKI$ Converts an integer to a character string. 124

MKL$ Converts a long integer to a character
string.

124

MKS$ Converts a single-precision value to a
character string.

125

NPIECE Determines the number of smaller
character strings.

126

OCT$ Converts a number to an octal character
string.

127

PIECE$ Returns partial character strings. 133

RIGHT$ Extracts the right end of the specified
character string.

143

RTRIM$ Deletes spaces to the right of a character
string.

145

SPACE$ Inserts space characters. 156

STR$ Converts a number to character string
representation.

159

STRING$ Creates a character string with a repeated
character.

160

UCASE$ Converts lowercase letters to uppercase
letters.

164

VAL Converts a character string to a number. 165

Japanese
h t t i

Command KPLOAD Registers a 2-byte character pattern. 110p
character string
operation Function AKCNV$ Converts 1-byte characters to 2-byte

characters.
54

JIS$ Determines the Shift JIS code. 105

KACNV$ Converts from wide to standard
characters.

105

KEXT$ Selects a character. 105

KINSTR Determines the position of a 2-byte
character.

108

KLEN Determines the length of a character
string including 2-byte characters.

108

KMID$ Extracts part of a character string
including 2-byte characters.

109

KNJ$ Determines a 2-byte character. 109

KPOS Determines the position of a character in
a character string.

110

KTYPE Determines the type of a character. 111

File control Command CLOSE Closes an open file. 65

FIELD# Allocates the variable areas. 87

GET# Reads data from a random file. 93

INPUT# Reads data from a file. 101

LINE INPUT# Reads data from a file. 116

LSET Writes left-justified character data. 120

OPEN (1) Opens a file. 131

PRINT# Writes data to a sequential access file. 137

OVL Instruction List Section 1-2

16

Instruction PageOperationCommand/Function

File control Command PRINT# USING Writes formatted data to a sequential
access file.

138

PUT# Writes data to a random access file. 139

RSET Writes right-justified character data. 145

WRITE# 1-byte character string operation 168

Function ATTR$ Determines the write protect attribute of a
file.

55

DSKF Determines the free space in the memory
card.

81

EOF Determines the end of the file. 83

INPUT$ Reads a specified length of data. 102

LOC Determines the current position in a
specified file.

117

LOF Determines the size of a file. 118

Key control Command HELP ON/OFF/STOP Disables, enables, or stops interrupts
from the HELP Key.

96

INPUT Assigns data to a variable. 101

INPUT WAIT Inputs data with a time limitation. 102

KEY Assigns a character string to function
keys.

106

KEY ON/OFF/STOP Disables, enables, or stops interrupts
from the function keys.

106

KINPUT Input data in the Japanese input mode. 108

LINE INPUT Assigns a line of data to a character
variable.

115

LINE INPUT WAIT Inputs data with a time limitation. 116

ON HELP GOSUB Defines the HELP Key interrupt
subroutine.

128

ON KEY GOSUB Defines the function key interrupt
subroutine.

129

ON STOP GOSUB Defines the STOP Key interrupt
subroutine.

129

STOP ON/OFF/STOP Disables, enables, or stops interrupts
from the STOP Key.

159

Function INKEY$ Determines the character input from the
keyboard.

100

KEYIN Reads the status of the console keys. 107

SPACE$ Inserts space characters. 156

SPC Outputs space characters. 156

Time/date control Command DATE$ Displays and sets the date. 73

ON TIME$ GOSUB Defines the timer interrupt subroutine. 130

TIME$ Displays and sets the time. 162

TIME$ ON/OFF/STOP Disables, enables, or stops timer
interrupts.

163

TIMER Reads and sets the 10 ms timer. 163

Function DATE$ Displays and sets the date. 73

TIME$ Displays and sets the time. 162

TIMER Reads and sets the 10 ms timer. 163

OVL Instruction List Section 1-2

17

Instruction PageOperationCommand/Function

RS-232C
i ti

Command COM ON/OFF/STOP Controls interrupts from the RS-232C. 67
communication

ON COM GOSUB Defines the RS-232C interrupt jump
destination.

127

OPEN (2) Opens the RS-232C port. 132

I/O port I/O
t l

Command BUSY Controls BUSY signal output status. 59p
control

DOUT Outputs data to an output port. 80

ERROUT Controls the error signal output. 85

GATE Controls the GATE signal. 91

INTR ON/OFF/STOP Disables, enables, or stops interrupts with
the STEP signal.

104

ON INTR GOSUB Defines the STEP signal interrupt
subroutine.

128

POUT Controls the bit status of an output port. 135

Function DIN Reads data from an input port. 77

DSA Reads the status of the DSA signal. 81

PIN Reads the bit status of an input port. 133

Memory
t

Command CLEAR Initializes variables. 65y
management

Function FRE Determines the free memory size. 91

Special Command BEEP Turns the buzzer on and off. 58p

DEVICE Specifies the input and output devices. 76

IMGLOAD Loads image data to VRAM. 99

IMGSAVE Saves image data from VRAM. 100

IPL Sets the OVL boot-up mode. 104

MENU Returns to the Menu mode. 122

Scene Command CHANGE Changes the measuring conditions. 62

SCNCALIB Sets the calibration data. 148

SCNLOAD Loads the scene data. 149

SCNLUT Sets the binary level of a scene. 149

SCNSAVE Saves the scene data. 149

WINDOW 1-byte character string operation 167

Function SCNCAM Reads the camera data for a scene. 148

SCNLEVEL Determines the binary level of a scene. 148

Measurement Command LABEL Carries out labelling. 111

LPUTIMG Draws a labelled image. 119

LSORT Renumbers labels in order of area. 120

MEASURE Conducts measurements. 122

MMODE Sets the measurement mode. 125

RMODE Sets the measurement mode for detailed
run length data.

144

SCAN Conducts scan measurement. 147

SCANSET Sets the conditions for scan
measurement.

147

Function LDATA Measures data for the labelled image. 112

LNUM Determines the number of labelled
images.

117

OVL Instruction List Section 1-2

18

Instruction PageOperationCommand/Function

Measurement Function LPOINT Determines the label number at a
specified position.

119

MDATA Reads the measured results 1. 121

MDATA2 Reads the measured results 1. 121

RDATA Reads the detailed run length data. 140

RUNL Reads the simple run length data. 146

SDATA 1 Reads the scan measurement data 1. 149

SDATA 2 Reads the scan measurement data 2. 150

Image processing Command ENHANCE Creates LUT data for contrast
modification.

83

FILTDATA Specifies the line filter factors. 88

FILTER Sets the image filtering function. 88

FILTERIN Selects image input to the filter. 89

GETBLUT Reads the binary LUT data. 94

GETLUT Reads the filter LUT data. 95

HISTGRAM Reads a density histogram. 97

LEVEL Sets the binary level. 114

SETBLUT Sets array data as binary LUT data. 152

SETLUT Sets array data as the filter LUT data. 153

SFTBLUT Shifts the binary LUT level. 153

SFTLUT Shifts the filter LUT. 154

Function AUTOLVL Determines the binary level. 56

Camera/strobe
t l

Command CAMERA Switches cameras. 60
control

CAMMODE Selects the image output from a Camera
I/F Unit.

60

EVENTIN Sets the image input synchronized with
events.

85

FLASH Controls the strobe and shutter function. 90

STRMODE Enables and disables strobe flashing. 160

VIDEOIN Inputs an image. 165

Function CAMCHK Determines the camera connection
status.

60

STRCHK Checks for incorrect strobe flashing. 160

Display control Command BACKDISP Sets the image display outside the
window.

56

DISPLAY Sets the display image. 77

GETDLUT Reads the display LUT data. 94

SETDLUT Sets the display LUT data. 152

SETDLVL Sets the display level for each display
image.

153

WDISP General 166

Function GETDLVL Determines the display level of the image. 95

OVL Instruction List Section 1-2

19

SECTION 2
OVL Syntax

This section provides the basic OVL syntax required before programming.

2-1 Line Format 20.
2-1-1 Lines 20.
2-1-2 Line Numbers 20.
2-1-3 Statements 20.

2-2 OVL Characters and Symbols 20.
2-3 Constants 21.

2-3-1 Character Constants 21.
2-3-2 Numeric Constants 22.

2-4 Variables 23.
2-4-1 Type Declarators 23.
2-4-2 Variable Names 24.
2-4-3 Reserved Words 24.
2-4-4 Array Variables 24.

2-5 Type Conversion 25.
2-6 Operations and Expressions 27.

2-6-1 Operators 27.
2-6-2 Expressions 29.
2-6-3 Priority of Operations 32.

2-7 Interrupts 32.
2-8 Labels 32.

20

2-1 Line Format
2-1-1 Lines

An OVL program is composed of lines.

Example Line numbers and text
10 PRINT ”OVL”
20 REM ***OVL***
30 ’ ***OVL***
40 PRINT: PRINT ”END”
50 END

Statement
Line number

Each line consists of a line number and a statement. Each line, including the line
number, spaces, and the instruction may be up to 255 bytes in length.
Normally a line declares a single statement but it is possible to include multiple
statements in a line. Multiple statements in a single line are delimited by colons
(:).

2-1-2 Line Numbers
The line numbers are positioned at the start of a line and are integers applied in
ascending order between 1 and 65535. If line numbers are not applied in
ascending order, the lines are automatically rearranged into ascending order.
Line numbers may start and finish with any number between 1 and 65535.
Lines assigned with line numbers are stored as part of the program when the
Return Key is pressed. A line with no line number is not stored as part of the
program but is executed immediately when the Return Key is pressed.
The program is executed in the order of the line numbers, except where
branching occurs.

2-1-3 Statements
A statement is the smallest unit used to declare an OVL procedure.
Statements include executable statements which declare and execute OVL
commands and functions, non-executable statements which provide program
comments, and labels which define jump destinations.

2-2 OVL Characters and Symbols
The following characters and symbols can be used with OVL programming.

Roman uppercase
Roman lowercase
Numerals
Katakana
Symbols
Control characters

Japanese characters

1-byte characters

2-byte characters

Statement

Only lowercase characters defined in a character constant or character variable
inside quotes (” ”) are handled as lowercase characters. The system
automatically converts other lowercase characters to uppercase characters.

Symbols Period (.)
The period indicates the current line number (the last line number
executed). It can replace the line number in the following commands:
AUTO, EDIT, LIST, LLIST, RENUM.

OVL Characters and Symbols Section 2-2

21

Minus (–)

The minus specifies a range of lines.

Colon (:)

The colon delimits one statement from another.

Comma (,)

The comma delimits parameters in a series.

Semicolon (;)

The semicolon delimits parameters in an output statement.

Apostrophe (’)

Identical in meaning to a REM statement.

Question Mark (?)

Simplifies input of the word “PRINT.” Immediately after input, the question
mark is converted to “PRINT.”

Asterisk (*)

The asterisk indicates the start of a label name.

Space

A space must be inserted between a command and the following parameter.
Other spaces may be inserted anywhere except inside command names,
variable names, or numeric values.

2-3 Constants
Values or character strings declared directly in the program are known as
constants. A character constant is declared differently from a numeric constant.

Character constant

Octal format
Decimal format
Hexadecimal format

Octal format
Decimal format
Hexadecimal format

Single-precision constant

Double-precision constant

Character constant

Numeric constant

Constants

Integer constant

Long integer constant

Real number constant

2-3-1 Character Constants
A character constant is a character string enclosed in double quotation marks (”)
and can contain up to 255 characters.

The CHR$ function must be used to include double quotations inside a character
string, as shown in one of the examples below.

A character string of zero length is known as a “null string.”

Character Strings ”1234567890” Arithmetic operations cannot be carried out on numbers in. . . .
this form.

”NEW PLAN” This character string contains 8 characters, 7 letters and. . . .
one space.

CHR$(34) This character string represents a single double quotation.
(”) character.

Constants Section 2-3

22

”” This is a null string..

2-3-2 Numeric Constants
A numeric constant directly declares a value for operation by the arithmetic
operators.

The plus (+) of minus (–) sign can be included before the value to indicate a
positive or negative value, but the plus sign may be omitted.

Numeric constants can be declared as integers or real numbers.

Integer Constants Decimal Format

Integers must lie in the range –32768 to +32767.

Adding a % sign to a real number in the above range rounds off the value to
an integer constant.

Examples of decimal format integer constants:

32767

–123

+5%

321.01% (This is identical to 321.)

Octal Format

An octal integer constant is declared as an octal value (digits 0 to 7)
preceded by the prefix &O. However, the “O” can be omitted if required.

Octal integer constants can be specified between &O0 and &O177777.

Examples of octal format integer constants:

&12345

&O77777

Hexadecimal Format

A hexadecimal integer constant is declared as a hexadecimal value (digits 0
to 9, A to F) preceded by the prefix &H.

Hexadecimal integer constants can be specified between &H0 and
&HFFFF.

Examples of hexadecimal format integer constants:

&H100

&HFCA0

Long Integer Constants Decimal Format

Integers must lie in the range –2147483648 to +2147483647.

Adding a & sign to a real number in the above range rounds off the value to a
long integer constant.

Examples of decimal format long integer constants:

9500000&

–365432&

100.12& (This is identical to 100.)

Octal Format

An octal integer constant is declared as an octal value (digits 0 to 7)
preceded by the prefix &O and followed by the type declarator (&).

Octal integer constants can be specified between &O0& and
&O37777777777&.

Examples of octal format long integer constants:

&O12345&

&O112377777&

Constants Section 2-3

23

Hexadecimal Format
A hexadecimal integer constant is declared as a hexadecimal value (digits 0
to 9, A to F) preceded by the prefix &H and followed by the type declarator
(&).
Hexadecimal integer constants can be specified between &H0& and
&HFFFFFFFF&.
Examples of hexadecimal format long integer constants:

&H100&
&HFCA00&

Note Values input in octal and hexadecimal format are printed out in decimal format.

Real Number Constants Single-precision Format
Real number data between –1.70141E+38 to +1.70141E+38 to 6 significant
digits.
The following numbers are declared as single-precision real numbers:
• Values with a decimal point but not exceeding 6 significant digits
• Values with the single-precision declarator (!)
• Values in the single-precision E exponent format.
Examples of single-precision constants:

108.12
3.14!
–8.76E–6

Double-precision Format
Real number data between –1.701411834604692D+38 to
+1.701411834604692D+38 to 16 significant digits.
The following numbers are declared as double-precision real numbers:
• Real numbers with 7 or more digits
• Values with the double-precision declarator (#)
• Values in the double-precision D exponent format.
Examples of double-precision constants:

108.123456
3.14#
–8.76D–6

2-4 Variables
Named areas in the program in which values or character strings are stored are
known as variables.
Before a value is allocated, a numeric variable contains 0 and a character
variable contains a null string (” ”).
The user can declare both the name and type of a variable.

Character variable

Numeric variable

Variable

Single-precision variable
Double-precision variable

Integer variable
Long integer variable
Real number variable

2-4-1 Type Declarators
The type of variable is declared with a declarator suffix to the variable name.
Variables with an identical variable name but different declarators are treated as
separate variables.

Variables Section 2-4

24

Types of Declarator:

$ Character. . . .

% Integer. . . .

& Long integer. . . .

! Single-precision.

Double-precision. . . .

The type of variable can also be declared with a type statement. However, the
type declared with the type declarator takes priority over the type statement.

Types of Type Statement:

DEFSTR Declares a character variable..

DEFINT Declares an integer variable..

DEFLNG Declares a long integer variable..

DEFSNG Declares a single-precision variable..

DEFDBL Declares a double-precision variable..

Variables not declared with a type declarator or type statement are treated as
single-precision numeric variables.

Examples of type statements:

DEFSTR NAME$
DEFDBL AX#, AY#, AZ#

The $ and # can be omitted from these statements.

2-4-2 Variable Names
Variable names are limited to 40 characters, including the type declarator. Al-
phanumeric characters, the period, and type declarator are valid in a variable
name.

The name must start with an alphabetic character. Uppercase and lowercase
characters are not differentiated. The type declarator must be added to the end
of the variable name.

Symbols cannot be used in variable names.

Reserved words cannot be used as variable names. However, variable names
may contain reserved words.

Variable names cannot begin with the letters “FN.”

2-4-3 Reserved Words
Reserved words are character strings defined in the system, such as
commands, functions, and operators. Users cannot use reserved words as
variable names.

The reserved words are listed in Appendix B, Reserved Words.

2-4-4 Array Variables
A variable with a single variable name storing multiple values is known as an
array variable.

Array variables storing character strings are classified as character array
variables and array variables storing numeric values are classified as numeric
array variables.

Numeric array variables are further subdivided according to the type of numeric
values they store into integer array variables, long integer array variables,

Variables Section 2-4

25

single-precision real number array variables, and double-precision real number
array variables.

Character array variable

Numeric array variable

Array variable
Integer array variable
Long integer array variable
Single-precision real number array variable
Double-precision real number array variable

The dimension of the array variable and the subscript range are declared with
the DIM statement.

It is unnecessary to use the DIM statement to declare subscripts up to 10.

Example:
DIM A (10, 10, 10) may be omitted.

The dimensions of the array must be declared in a single program line (255
characters). The subscripts are limited by the amount of memory. Consequently,
4-dimensional, 5-dimensional, and 6-dimensional arrays may be declared but
the number of elements are restricted.

Example:

DIM A(10) 1-dimensional array,
number of elements = 11

DIM TA(10, 50) 2-dimensional array,
number of elements = 11 x 51 = 561

DIM TTA$(2, 5, 3) 3-dimensional array,
number of elements = 3 x 6 x 4 = 72

. . . 4-dimensional array

. . . 5-dimensional array

. . . 6-dimensional array

Subscripts start from zero, so that the action number of elements is 1 plus the
subscript.

2-5 Type Conversion
If necessary, the type of numeric data can be converted under the conditions
described below.

It is not possible to convert between character and numeric data.

Condition 1 When data is assigned to a variable of a different type, the data is converted to
the type declared with the variable type declarator.

Example of assigning a value to a variable of a different type:

10 A%=1.234 Assigns the single-precision real number 1.234 to the. .
integer variable A% (assigned as 1).

20 PRINT A% Displays the value stored in the integer variable A% on. .
the screen.

Result:

1 The integer 1 is displayed..

Condition 2 Before operations are carried out on values with different accuracies, all values
are first converted to the accuracy of the highest accuracy value.

Example of operations on values of different accuracy:

10 A%=10%/3%

20 PRINT A% The result of the operation on integers is displayed as. .
an integer.

30 B!=10%/3!

Type Conversion Section 2-5

26

40 PRINT B! The integer 10% is converted to a single-precision real. .
number, the operation is carried out on single-preci-
sion values, and the result displayed as a single-preci-
sion value.

50 C#=10%/3#

60 PRINT C# The integer 10% is converted to a double-precision. .
real number, the operation is carried out on double-
precision values, and the result displayed as a double-
precision value.

Results:

3 Result of execution of line 20 is an integer..

3.33333 Result of execution of line 40 is a single-preci-.
sion real number.

3.333333333333333 Result of execution of line 60 is a double-preci-. . .
sion real number

Condition 3 Before logical operations all values are converted into integers and the results
are also integers.

Example of logical operations:

10 A=1.234 Assigns the value 1.234 to the numeric variable A.. . .

20 B=NOT A Converts the value 1.234 stored in the numeric vari-. . .
able A to the integer 1, executes the NOT logical op-
eration, and assigns the result (–2) to the numeric vari-
able B.

30 PRINT B, A Displays the values stored in the numeric variables B
and A on the screen.

Result:

–2 1.234 Result of execution of line 30 is displayed on the.
screen.

Condition 4 Real numbers are rounded off to an integer. An error occurs if the converted
value lies outside integer range.

Example of conversion to an integer:

10 A%=1.45 Assigns the value 1.45 rounded of to 1 to the integer. . .
variable A%.

20 B%=1.65 Assigns the value 1.65 rounded of to 2 to the integer. . .
variable B%.

30 PRINT A%,B% Displays the values stored in the integer variables A%
and B% on the screen.

Result:

1 2 Result of execution of line 30 is displayed on the.
screen.

Condition 5 When a double-precision variable is assigned to a single-precision variable, the
variable is rounded off to 6 significant digits, with subsequent digits rounded off.

Example of conversion to a single-precision, real number variable:

10 A!=3.14159265358 Substitutes the effective six digits, 3.14159,.
for a single-precision, real number variable A!.

20 PRINT A! The value to be stored as the single-precision,.
real number variable A! will be displayed (the
seventh digit will be rounded to the nearest
whole number).

Result:

3.14159 Result of execution of line 20 is displayed on the screen.. . . .

Type Conversion Section 2-5

27

Note OVL does not convert between numeric and character data, except for special
applications such as random access file I/O and conversion of number declara-
tion character strings to numeric data.

Special functions are used to convert between numeric and character data,
where required.

Random access file I/O:

CVI/CVL/CVS/CVD functions
MKI$/MKL$/MKS$/MKD$ functions

Conversion of a number declaration character string to numeric data:

VAL function

Conversion of numeric data to a character string:

STR$ function

2-6 Operations and Expressions

2-6-1 Operators
Three types of operator are used in OVL: arithmetic operators, relational
operators, and logical operators.

Arithmetic operator Addition, subtraction, multiplication, division, exponent, remainder operations..
Relational operator Comparison of two expressions..
Logical operator Operations under multiple conditions, bit operations, binary operations.

Operator

Arithmetic Operators Arithmetic operators link numeric constants or variables to carry out addition,
subtraction, multiplication, division, exponent, and remainder operations.

Arithmetic
operator

Description Declaration
example

Mathematical
notation

+ Addition A + B A + B

– Subtraction A – B A – B

* Multiplication A * B A x B or AB

/ Real number
division

A / B A ÷ B or A/B

¥ Integer division A ¥ B [A/B]
[] indicates Gauss’
notation

^ Exponent
operation

A ^ B AB

MOD Remainder
calculation

A MOD B A – [A/B] x B
[] indicates Gauss’
notation

If either the divisor or dividend for integer division is a real number, the real
number is rounded off to an integer before division. If the quotient contains
decimal places, these are dropped.

Example of integer division:

123.4¥67.89 A 123¥68 A 1.808 A 1

Decimals rounded off A DivisionA Decimals dropped A Results

The decimal places are rounded off before the remainder calculation is carried
out on real numbers. The result is the remainder from the integer division.

Example of remainder calculation:

13.3 MOD 4 = 1 Remainder of 13 divided by 4.

25.68 MOD 6.99 = 5 Remainder of 26 divided by 7.

Operations and Expressions Section 2-6

28

Digit overflow occurs if the result of a calculation exceeds the range of the value
type. If the digits overflow, an error is output and the calculation continues with
the maximum value the computer can handle.

Example of digit overflow:

A% = 32760 + 10

An error is output and the A% value becomes 32767.

If division by 0 is carried out during operation, an error is output and the
calculation continues with the maximum value the computer can handle. The
same applies if the exponent operation is carried out on 0 with a negative
exponent.

Relational Operators Relational operators compare two numeric data or 2 character data.

True (–1) is returned if the result of the compared data is the same or False (0) is
returned if the result of the compared data is different.

Relational operator Description Declaration example

= Equals A = B

< >, > < Not equals A < > B, A > < B

< Less than A < B

> Greater than A > B

< =, = < Less than or equal to A < = B, A = < B

> =, = > Greater than or equal to A > = B, A = > B

Relational operators are used inside the IF statement to control the flow of
program execution.

Examples of relational operators inside the IF statement:

IF A<>B THEN 1000 Jump to line 1000 if A is not equal to B (A <.
> B is true (–1)).

IF A$ = “Y” THEN *PROCESS1 Jump to label *PROCESS1 if A$ is equal
to “ Y” (A$ = “ Y” is true (–1)).

Logical Operators Logical operators are used to investigate multiple conditions and carry out bit
operations or binary (Boolean) operations on a specified value.

The handled values are first converted to a two’s complement display integers
between –32768 to +32767 before the value 0 or 1 is assigned to each bit as the
result of the operation. An error occurs if this range is exceeded during
conversion.

Logical operator Description Equivalence

NOT Declaration example NOT A

AND Negation A AND B

OR Logical product A OR B

XOR Logical sum A XOR B

IMP Exclusive OR A IMP B

EQV Inclusive OR A EQV B

Refer to page 29 for details of the results of logical operations.

Operations and Expressions Section 2-6

29

2-6-2 Expressions
In an OVL program, an “expression” refers to constants, variables, functions,
numeric constants and variables linked with arithmetic operators, and character
constants and variables linked with plus signs (+).

Examples of expressions:

Numeric
expressions

Character
expressions

Function
expressions

Logical
expressions

A=20*15/3
S=P*D*D/4
2.7145
A
SIN (X)

A$=”OVL”+”BASIC”
A$=B$+C$
”OVL”
A$
CHR$ (31)

A=B
A<B
A<>B

A AND B
A OR B
A XOR B
A<B AND A>C
A=B OR A<>C

Numeric Expressions An expression returning a numeric value is known as a numeric expression.

Numeric expressions can be numeric constants, numeric variables, or functions
returning numeric values linked by arithmetic or logical operators.

Multiple expressions contained within parentheses () can be linked together.

+
–
Not

Numeric constant
Numeric variable
Function returning a numeric value
(Numeric expression)

Arithmetic operator
Logical operator

Character Expressions An expression returning a character string is known as a character expression.

Character expressions can be character constants, character variables, or
functions returning character strings linked by plus signs.

Multiple expressions contained within parentheses () can be linked together.

Character constant
Character variable
Function returning a character string
(Character expression)

+

Plus sign +. . . links character strings

Relational Expressions A pair of numeric expressions linked by a relational operator is known as a
relational expression.

Relational expressions can be numeric constants, numeric variables, or
functions returning numeric values linked by relational operators.

Numeric constant
Numeric variable
Function returning a numeric value
(Numeric expression)

Numeric constant
Numeric variable
Function returning a numeric value
(Numeric expression)

Relational
operator

Logical Expressions Multiple relational expressions linked by logical operators are known as a logical
expression.

A logical expression is made up of several relational expressions linked by
logical operators to execute bit or binary operations or to evaluate multiple
conditions.

Operations and Expressions Section 2-6

30

Logical expressions have a numeric value and may be used in any position as a
numeric expression.

A logical expression is True if the result of the expression is –1 or False if the
result is 0.

Relational
operator

(Not)

Relational
operator

Logical expressions may include six types of logical operator: NOT, OR, AND,
XOR, IMP and EQV.

The results of operation by these logical operators on a single bits A and B are
shown in the following tables.

NOT

A NOT A
Result

0 1

1 0

AND

A B A AND B
Result

0 0 0

0 1 0

1 0 0

1 1 1

OR

A B A OR B
Result

0 0 0

0 1 1

1 0 1

1 1 1

XOR

A B A XOR B
Result

0 0 0

0 1 1

1 0 1

1 1 0

IMP

A B A IMP B
Result

0 0 1

0 1 1

1 0 0

1 1 1

EQV

A B A EQV B
Result

0 0 1

0 1 0

1 0 0

1 1 1

Examples of bit operations using logical expressions:

Logical expression (NOT): NOT 5 Result: –6

Logical
expression

Integer
representation

Binary representation

--- 5 0000000000000101

NOT 5 –6 1111111111111010

Operations and Expressions Section 2-6

31

Logical expression (AND): 3 AND 5 Result: 1

Logical
expression

Integer
representation

Binary representation

--- 3 0000000000000011

--- 5 0000000000000101

3 AND 5 1 0000000000000001

Logical expression (OR): 3 OR 5 Result: 7

Logical
expression

Integer
representation

Binary representation

--- 3 0000000000000011

--- 5 0000000000000101

3 OR 5 7 0000000000000111

Logical expression (XOR): 3 XOR 5 Result: 6

Logical
expression

Integer
representation

Binary representation

--- 3 0000000000000011

--- 5 0000000000000101

3 XOR 5 6 0000000000000110

Logical expression (IMP): 3 IMP 5 Result: –3

Logical
expression

Integer
representation

Binary representation

--- 3 0000000000000011

--- 5 0000000000000101

3 IMP 5 –3 1111111111111101

Logical expression (IMP): 3 EQV 5 Result: –7

Logical
expression

Integer
representation

Binary representation

--- 3 0000000000000011

--- 5 0000000000000101

3 EQV 5 –7 1111111111111001

Functions A function executes predefined operations on specified values (called
arguments) and returns a numeric value or character string as the result. Al-
though functions are handled as expressions, unlike numeric, character,
relational, and logical expressions the function itself holds the result of the
operations.

Some functions are automatically assigned values by the system. These
functions are known as system variables.

System variables require no arguments. Values are assigned to some system
variables under special system conditions, such as when an error or interrupt
occurs, but some other system variables always hold values, such as the time or
date.

OVL offers user-defined functions that the BASIC user can define as required.
User-defined functions are handled inside the program in the same way as the
system variables.

Elementary functions (such as the SIN function) match the precision of the
argument. The function becomes double precision if the argument is a double-

Operations and Expressions Section 2-6

32

precision value or single-precision if the argument is an integer or a single-preci-
sion value.

2-6-3 Priority of Operations
Operations are executed in the order of priority shown below. Low numbers take
priority over higher numbers. Operations with the same number are executed in
the order in which they appear.

1, 2, 3... 1. Expressions enclosed in parenthesis

2. Functions

3. ^ (Exponents)

4. – (Minus signs: not preceded by a value or numeric expression)

5. *, / (multiplication and real number division)

6. ¥ (integer division)

7. MOD (remainder calculation)

8. +, – (addition, subtraction)

9. Relational operators (<, >, =, and combinations)

10. NOT

11. AND

12. OR

13. XOR

14. IMP

15. EQV

Example:

A% = 2 + 8 MOD 5 – 3

The above expression is interpreted as 2 + (8 MOD 5) – 3, so that A% = 2. Al-
though the parentheses are not strictly necessary in this example, it is normal to
include them to prevent confusion when reading the program.

2-7 Interrupts
OVL supports the interrupts listed below.

Stop Key (ON STOP GOSUB)

Help Key (ON HELP GOSUB)

Real-time timer (ON TIME$ GOSUB)

Function Key (ON KEY GOSUB)

RS-232C circuit (ON COM GOSUB)

Processing error (ON ERROR GOTO)

STEP signal (ON INTR GOSUB)

2-8 Labels
Labels can be used instead of line numbers to control jump destinations in a
program. Precede label names by an asterisk (*).

Define the name after the asterisk in alphabetic characters and the period
character (.). Uppercase and lowercase characters are not differentiated.

Reserved words cannot be used as label names. However, label names may
contain reserved words.

The length label name is restricted only by the number of characters in the
program line (255 characters).

Label names must be positioned at the start of the program line.

Labels Section 2-8

33

Example:

100 IF A<>B GOTO *UNEQUAL

110

120

200 *UNEQUAL

210

*UNEQUAL is interpreted in the GOTO statement as identical to 200. In this case,
the program jumps to line 200 if A ≠ B.

Labels Section 2-8

35

SECTION 3
Screen Operations

This section provides general information on screen manipulation.

3-1 Flow of Image Data 36.
3-1-1 VRAM 36.
3-1-2 LUT 38.
3-1-3 Display LUT 39.
3-1-4 Filter 39.

3-2 Display and Measurement Block Diagrams 40.
3-2-1 Display and Measurement Status of the Camera Image 40.
3-2-2 Display and Measurement Status of the Image Memory Contents 41.

3-3 Flow of Measured Data 41.
3-4 Plane and Frame Memory 43.

3-4-1 Plane Memory 43.
3-4-2 Frame Memory 43.
3-4-3 Binary Image Planes 43.
3-4-4 Mask Bits 43.

3-5 Windows 44.
3-5-1 Window Planes 44.
3-5-2 Paint Window 45.
3-5-3 Pattern Matching Window 45.

3-6 Drawing Density and Drawing Modes 46.
3-6-1 Drawing Density 46.
3-6-2 Drawing Mode 46.

3-7 Run Length 47.
3-7-1 Simple Run Length 47.
3-7-2 Detailed Run Length 48.

3-8 Labelling 48.
3-9 Scrolling 49.

3-9-1 Window Scrolling 49.
3-9-2 Shading Scrolling 49.

3-10 Fill Measurement 50.
3-11 Image Cut-off 50.
3-12 Scan Measurement 51.

36

3-1 Flow of Image Data
OVL offers image-processing commands and functions in addition to the normal
BASIC commands and functions. The flow of this image-processing data is
shown in the block diagram below.

Image Data Flow

Camera unit

Filter

Shading memory

LUT

Image memory

8 bit

8 bit

8 bits

VRAM 4:

VRAM 3:

Image bus 0

8 bits
Window memoryVRAM 2:

1 bit
Graphic memoryVRAM 1:

1 bit
Character memoryVRAM 0:

Image bus 1

Display
Display
control

3-1-1 VRAM
Memory directly influencing the measurements or display is known as VRAM.
The F300 has 5 types of VRAM, which are explained below.

Memory Type

0: Character memory

1: Graphic memory

Plane

2: Window memory

3: Image memory

4: Shading memory

Frame

Character Memory (Plane)
The character memory is mainly used to display characters and is used to edit
the OVL program and display compilation results. The contents of the character
memory have no direct effect on the measurement results. The memory is
configured as 512 x 512 x 1 bit.

Density (0 or 1 only):
0 A 0
!0 A 1

1 bit

512

512

Flow of Image Data Section 3-1

37

Graphic Memory (Plane)
The application of the graphic memory is not fixed.

Density (0 or 1 only):
0 A 0
!0 A 1

1 bit

512

512

Window Memory (Frame)
The window memory is used to draw the windows. It consists of 8 window planes
with a one-to-one relationship to the binary image planes.

The window memory can be treated as 8 memory areas of 512 x 512 x 1 bit
configuration or as a single area with 512 x 512 x 8 bit configuration.

Density:
0 to 255

1
2

3
4

5
6

7

0

8 bits

512

512

Image Memory (Frame)
The image memory is used to store the raw image direct from the camera or the
8 binary images generated from the look-up table (LUT). The image memory
contents are treated as the raw measurement data.

The image memory can be treated as 8 memory areas of 512 x 512 x 1 bit
configuration or as a single area with 512 x 512 x 8 bit configuration.

Density:
0 to 255

1
2

3
4

5
6

7

0

8 bits

512

512

Flow of Image Data Section 3-1

38

Shading Memory (Frame)
The shading memory is used for shading compensation. If no shading
compensation is carried out, the memory has no effect on the measurements or
display.

The shading memory can be treated as 8 memory areas of 512 x 512 x 1 bit
configuration or as a single area with 512 x 512 x 8 bit configuration. The shading
master memory has two banks: Bank 0 and Bank 1.

Density:
0 to 255

1
2

3
4

5
6

7

0

8 bits

512

512

3-1-2 LUT
LUT is an abbreviation of Look-Up Table. The LUT is a conversion table for
selecting the colors displayed by the display system. The LUT plays the same
role in the system as a palette plays for an artist painting a picture; it selects the
actual color from amongst numerous gradations.

To express monochrome gradations, the OVL assigns 8 bits of data to each
image pixel, that is 28 = 256 gradations.

The LUT is used with the frame-structured memories (VRAM3: image memory,
VRAM4: shading memory). The gradation in the frame memory is determined by
referring to the LUT.

The LUT is a prewritten memory containing output data corresponding to any
input data address. The F300 uses the LUT conversion function for
preprocessing of binary and raw images and for conversion of the displayed
image.

Flow of Image Data Section 3-1

39

Related commands and functions:

AUTOLVL ENHANCE
GETBLUT GETLUT
HISTGRAM LEVEL
SETBLUT SETLUT
SFTBLUT SFTLUT

–256 to 255 0 to 255

Input data Output data

LUT data conversion

Binary conversion: 8 binary images

Graduated image preprocessing

Display image conversion

0

1

2

3

4

5

6

7

Camera

Image memory

LUT

Binary value 0 or 1

Plane numbers

8 binary image planes

3-1-3 Display LUT
The LUT used to improve the contrast of the display image and change the
gradations (0 to 255) of the raw image inside or outside a window is known as the
display LUT.

Related commands:

GETDLUT
SETDLUT

3-1-4 Filter
The filter is a pre-processing feature which sharpens the edges when the perim-
eter of the measured object is blurred.

Flow of Image Data Section 3-1

40

Related commands:

FILTER
FILTDATA

Sharpens blurred contrast
around perimeter of image.

3-2 Display and Measurement Block Diagrams

3-2-1 Display and Measurement Status of the Camera Image

The image data recorded by the camera is input to the image memory either
directly from the camera ((1) in the diagram) or after LUT conversion of the
image ((2) in the diagram).

VRAM 3:

VRAM 2:

VRAM 1:

VRAM 0:

VRAM 4:

(1)

(2)
LUT

Camera
I/F Unit

Input

Filter

Shading
memory

Image
memory

Window
memory

Graphic
memory

Character
memory

D
is

pl
ay

 c
on

tr
ol

le
r

Display

Display and Measurement Block Diagrams Section 3-2

41

3-2-2 Display and Measurement Status of the Image Memory Contents

Input from the camera unit is not possible during measurement or display of an
image already stored in memory.

VRAM 3:

VRAM 2:

VRAM 1:

VRAM 0:

VRAM 4:

LUT

No input from camera unit

Camera
I/F Unit

Filter

Shading
memory

Image
memory

No input to image memory

Window
memory

Graphic
memory

Character
memory

D
is

pl
ay

 c
on

tr
ol

le
r

Display

3-3 Flow of Measured Data
This section describes how the combination of the window function (W), paint
function (P), and pattern matching function (PM) set with the measure mode
(MMODE) command acts on the binary image planes 0 to 7.

W: Window function

P: Paint function

PM: Pattern matching function

The functions themselves are described in detail in 3-5 Windows.

Setting Example 1

Function Setting Description

W On Window function: ON

P Off Paint function: OFF

PM Off Pattern matching function: OFF

w

AND
GATE

Binary image data

Window memory
data

Measuring

Binary

Flow of Measured Data Section 3-3

42

Setting Example 2

Function Setting Description

W Off Window function: OFF

P Off Paint function: OFF

PM Off Pattern matching function: OFF

P
W

PM

Binary image data
Measuring

Binary

Setting Example 3

Function Setting Description

W Off Window function: OFF

P On Paint function: ON

PM Off Pattern matching function: OFF

Binary image data

Paint window data
(Window memory
plane 7)

P

W

OR GATE

Measuring

Binary

Setting Example 4

Function Setting Description

W On Window function: ON

P On Paint function: ON

PM Off Pattern matching function: OFF

Binary image data

Window memory data

Paint window data

AND

OR W

P

Measuring

Binary

Flow of Measured Data Section 3-3

43

3-4 Plane and Frame Memory
3-4-1 Plane Memory

The term “plane” is used to describe a memory with 512 x 512 x 1 bit
configuration. Consequently, the character memory, graphic memory, and parts
of the other 3 image memories with 512 x 512 x 1 bit configuration are grouped
under the name “plane memories.”

VRAM Type

0: Character memory
1: Graphic memory

Plane (512 x 512 x 1 bit)

2: Window memory
3: Image memory
4: Shading memory

Frame (512 x 512 x 8 bit)

512

512
1 bit

3-4-2 Frame Memory
The term “frame” is used to describe an image memory with 512 x 512 x 8 bit
configuration. Consequently, the window memory, image memory, and shading
memory with 512 x 512 x 8 bit configuration memories are grouped under the
name “frame memories.”

512

512

8 bits

0
1

2
3

4
5

6 7

3-4-3 Binary Image Planes
Each of the eight types of binary image converted by the binary LUT from the
camera or frame memory raw image is known as a binary image plane, and is
denoted by a binary plane number between 0 and 7. The binary image plane has
a one-to-one relationship with the window plane of the same number. All eight
binary image planes are measured simultaneously.
Often the term “plane” is used to include the window plane.

0
1

2
3

4
5

6 7 Window plane 7

Binary image plane:
Any of the window planes can be set as the window to be
measured. However, the eighth window (window plane 7)
has a special function as the paint window. Refer to sec-
tions 3-5-2 Paint Window and 3-5-3 Pattern Matching
Window for information about the function of this window.

3-4-4 Mask Bits
Write protection can be enabled by setting a mask bit to prevent data being
changed after it is written to a frame memory.

Plane and Frame Memory Section 3-4

44

Related commands:

MASKBIT

VRAM Type Description

0: Character memory
1: Graphic memory

Plane Mask bits not available

2: Window memory
3: Image memory
4: Shading memory

Frame Mask bit can be used to
enable write protection.

Example: 27(10) = 00011011(2)

0
7

0
6

0
5

1
4

1
3

0
2

1
1

1
0Plane number

Corresponding
bit

Write protected

Note If the mask bit is set to 1, the corresponding plane is write protected and its
contents cannot be changed.

0
1

2
3

4
5

6
7

Write protected

In the example above, planes 0, 1, 3, and 4 are write protected. The other planes
are write enabled, that is the data can be changed.

3-5 Windows
Windows define the measurement area on a binary image plane. If some of the
binary image displayed on the screen is not to be measured, a window graphic
can be set to include only the object to be measured so that the binary image
outside the object is deleted before measurement.

0
1

2
3

7
. . .

Object to be measured

Measurement window

Binary image outside the object
(eliminated before measurement)

3-5-1 Window Planes
Multiple windows can be set for each of the eight binary image planes. In this
case, each of the eight binary image planes is known as a window plane and has
the same number between 0 and 7 as the binary image plane.

The term “plane” may be used to refer collectively to binary image planes and
window planes.

Windows Section 3-5

45

The eight binary image planes:

0
1

2
3

7
. . .

Window plane 0 to 7

Multiple windows can be set for each binary image plane. In
this example, three windows are set in a single window plane.

3-5-2 Paint Window
The eighth window (window plane 7) is used exclusively for paint windows. A
paint window can be set in the area to be measured, regardless of whether the
binary image of the measured object is available. For example, by selecting a
paint window over the hole in the measured object, the object is measured as if it
had no hole.

Window plane 7 can be set as the paint window for each binary image plane.
Each of the binary image planes number 0 to 6 can function simultaneously with
normal windows and paint windows. However, normal and paint windows
cannot be mixed in binary plane number 7.

A paint and pattern matching window cannot be set simultaneously in a single
binary image plane.

The eight binary image planes:

0

1
2

3
4

5
6 7

0
1

2
3

4
5

6
7

The eighth window plane is the special paint win-
dow plane number 7. It cannot simultaneously
contain both normal and paint windows.

Both normal and pattern matching windows can be
set simultaneously in window planes 0 to 6.

Hole

Object is considered to have no hole
if the the hole is filled with paint.

3-5-3 Pattern Matching Window
Pattern matching is carried out in window plane 7.

In this case, window plane number 7 is known as the pattern matching window.
During pattern matching, the shape of the pattern matching window is
superimposed on the shape of the measured object binary image and the area of
the non-matching parts is measured.

Window plane 7 can be set as the pattern matching window for each binary
image plane. Each of the binary image planes number 0 to 6 can function
simultaneously with normal windows and pattern matching windows. However,
normal and paint windows cannot be mixed in binary plane number 7.

A paint and pattern matching window cannot be set simultaneously in a single
binary image plane.

Windows Section 3-5

46

The eight binary image planes:

0
1

2
3

4
5

6 7

0
1

2
3

4
5

6
7

The eighth window plane is the special paint win-
dow plane number 7. It cannot simultaneously
contain both normal and paint windows.

Both normal and pattern matching windows can be
set simultaneously in window planes 0 to 6.

3-6 Drawing Density and Drawing Modes
3-6-1 Drawing Density

The drawing density directly specifies the density when drawing a graphic to
image memory with the graphic control command. Existing contents of the
image memory are overwritten.
Only values 0 and 1 are written to a plane image memory. In this case, specify
the drawing density either as 0 or as a non-zero value (!0). The value 0 is written
to memory if the drawing density is specified as 0. The value 1 is written to the
image memory if the drawing density is specified as a non-zero value.
Drawing density values between 0 and 255 can be written to a frame image
memory. These values are expressed as 8-bit binary values. Each of these bits
corresponds to one plane of the frame memory. For example, if the drawing
density is 105, which is expressed as 01101001 in binary, 1 is written to planes 0,
3, 5, and 6, and 0 is written to planes 1, 2, 4, and 7.

VRAM Type Density

0: Character memory
1: Graphic memory

Plane 0 or 1

2: Window memory
3: Image memory
4: Shading memory

Frame 0 to 255

Example: 105(10) = 01101001(2)

0
7

0
6

0
5

1
4

1
3

0
2

1
1

1
0Plane number

Corresponding
bit

0: Off
1: On

3-6-2 Drawing Mode
The drawing mode carries out logical operations on the graphic in the graphic
memory and the graphic data being written to the graphic memory when a
graphic is drawn to image memory with the graphic control command.
The following three modes can be specified:
OR: the drawn graphic is ORed with the image memory contents
XOR: the drawn graphic is XORed with the image memory contents
NOT: the contents of the image memory are cleared

200

Image memory contents = 200

Drawing Density and Drawing Modes Section 3-6

47

The results of these logical operations are shown below.

200 255 200 255 200

0

0

255 55
XOROR NOT

3-7 Run Length
A binary image can be considered as a collection of line segments in the X and Y
directions. The length of these line segments is known as the run length. The
F300 can measure two types of run length: the simple run length and the detailed
run length.

Detailed run length: The lengths of lines AB and CD are determined separately.

Simple run length: The total length of lines AB and CD is determined.

X

Y

A B C D

Concave Object

Both the simple run length and detailed run length give the same result for the
length of the line segment AB.

X

Y A B

Convex Object

3-7-1 Simple Run Length
The simple run length is the total length of line segments at various Y-coordinate
positions. Measurement is possible in the X direction only.

If multiple line segments exist at a single Y coordinate, the individual lengths of
each section cannot be determined. If measurements are made on a convex
object with no hole, the simple run length is identical to the detailed run length in
the X direction.

If a concave object is measured, the simple run length includes the detailed run
length.

Related commands and functions:

MEASURE
MMODE
RUNL

Run Length Section 3-7

48

It is not possible to determine the individual lengths of more than one line
segment at a single Y-axis coordinate axis position, like AB and CD in the
diagram for example.

X (512 pixels)

Y
A B C D

(484 pixels)

3-7-2 Detailed Run Length
The detailed run length is the individual length of each line segment at an X- or
Y-coordinate position. The number of detailed run length data depends on the
size of the binary image and complexity of the shape.

Related commands and functions:

MEASURE
RMODE
RDATA

X (512 pixels)

Y
(484 pixels)

3-8 Labelling
Labelling involves applying serial numbers starting from 0 to unlinked binary
images. Complex applications can be handled using the results of labelling and
other measurement properties.

Labelling can be used to determine how many measured objects are contained
in the screen. The maximum label number corresponds to the number of
objects. The properties of each object can be determined from the data after
labelling, giving more detailed information.

Label 1: Measured object 1

Label 2: Measured object 2

Label 3: Measured object 3

Label 4: Measured object 4

Label 255: Measured object 255

Label 4

Label 1
Label 2

Label 3
..... Label 255

Two methods are used to determine the linked status of objects during labelling:
Four-neighbor evaluation and eight-neighbor evaluation.

In four-neighbor evaluation, pixels are considered to be linked into a single
object if the four pixels on the top, bottom, left, and right of the evaluated pixel

Labelling Section 3-8

49

have the same density. The pixels in the diagonal corners of the evaluated pixel
are ignored.

In eight-neighbor evaluation, pixels are considered to be linked into a single
object if all adjacent pixels have the same density.

Four-neighbor evaluation

(Considered as a single object.)

: These pixels all have the same density.

Eight-neighbor evaluation

(Considered as a single object.)

Example:

Four-neighbor evaluation: Considered as five objects
Eight-neighbor evaluation: Considered as one object

Related commands:
LABEL LPUTIMG
LSORT LDATA
LPOINT

3-9 Scrolling

3-9-1 Window Scrolling
If the position of the measured object moves inside the screen, the position of the
window must be moved accordingly. This operation is known as positional
displacement compensation.

The following two methods are possible for compensating for positional
displacement:

• Compensation by scrolling the window
• Rotating the image of the measured object

The F300 uses only the first method, compensation by scrolling the window, as
this method overcomes the errors in measurement results which occur when the
image of the measured object is rotated.
Related command: WSCROLL

Window

2: Rotation

1: Window scrolling

3-9-2 Shading Scrolling
If the background to the measured object has uneven brightness and the
position of the background changes inside the screen, shading compensation is
required to move the shading memory contents accordingly. This operation is
known as shading scrolling.

Scrolling Section 3-9

50

Related command:

SSCROLL

Background Shading scrolling is carried out if
the position of an unevenly-lit
background moves.

3-10 Fill Measurement
The measurement of an object containing a hole as if it had no hole is known as
fill measurement. However, accurate measurements ignoring the hole only are
only possible for measured objects with a convex outline. A concave outline is
defined as a shape in which no tangent crosses the outline itself. Consequently,
a hole in a circle, triangle, or square outline is ignored accurately, but this is not
possible with a star-shaped or U outline, for example.

Hole is ignored

Depression is ignored

3-11 Image Cut-off
Removing images which coincide with the edge of the window is known as
image cut-off. Images fully contained in the window remain unchanged.

The F300 uses labelling to carry out this feature.

Related commands:

RMODE LABEL
LPUTIMG LSORT
LDATA LPOINT

Window

Label 0

Label 1 Label 2

Image cut-off

During labelling, cut-off images are skipped, so that in this case only Label 1 re-
mains.

Image Cut-off Section 3-11

51

3-12 Scan Measurement
Scan measurement allows measurement of the number and length of measured
objects along the binary image of any shaped line in the image memory.
The following shapes can be scanned:

• Ellipses (including circles)

• Polygons

• Straight lines

• Polygonal lines

Related commands and functions:

SCAN SCANSET
SDATA1 SDATA2

Example:

The number of teeth and various scan lengths can be measured on this
gearwheel.

Scan Measurement Section 3-12

53

SECTION 4
Reference

This section provides detailed information on the commands and functions. Examples are also provided.

54

ABS ABSolute
(Function)

Action Determines an absolute value.

Format ABS (numeric expression)

Example A = ABS (–7)

Assigns 7, the absolute value of –7, to variable A.

Description Determines the absolute value of the specified numeric expression.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The ABS function always returns a double-pre-
cision real number.

AKCNV$ Ank Kanji CoNVert$
(Function)

Action Converts 1-byte characters in a character string to 2-byte characters.

Format AKCNV$ (character string)

Example C$ = AKCNV$ (”OVL”)

Assigns “OVL” to variable C$.

Description The AKCNV$ function converts all 1-byte characters in a character string to a
2-byte equivalent. The AKCNV$ function returns a character string containing
2-byte characters only.

Specify a character string containing a mixture of 1- and 2-byte characters as a
character variable or character constant with the character string variable.

The KACNV$ function has the opposite action to the AKCNV$ function.
KACNV$ converts 2-byte characters in a character string to a 1-byte equivalent.

ARC ARC
(Command)

Action Draws an arc in VRAM.

Format ARC X, Y, R, start angle, end angle, VRAM [, [page#] [, drawing density or
drawing mode]]

Example ARC 200, 250, 45, 35, 75, 2,, 128

Draws an arc on Plane 7 of the window memory with center coordinates (200,
250), radius (45), start angle (35%), and end angle (75%).

Description The ARC command draws an arc clockwise between the start and end angle
around the center coordinates (X, Y) with the specified radius (R). Start angle
and end angle specified in degrees.

Specify the VRAM where the arc is drawn with a number, as follows.

0: Character memory

1: Graphic memory

2: Window memory

3: Image memory

4: Shading memory

Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

ARC Reference Section 4

55

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory.

0 : 0 written to memory

!0: 1 written to memory

The drawing mode settings operate as follows.

OR: The current contents of the image memory ORed with 255 are written to
memory.

NOT: 0 is written to memory

XOR: The current contents of the image memory are inverted.

The default value for the drawing mode is OR.

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

ASC ASCii
(Function)

Action Determines the character code of the first character in a character string.

Format ASC (character string)

Example A = ASC (” BASIC”)

Assigns the character code (66) for the first letter (B) of the character string
(BASIC) to variable A.

Description Returns the decimal character code of the first character in the specified
character string.

The CHR$ function has the opposite action to the ASC function. CHR$ returns
the character corresponding to the specified character code.

ATN ArcTaNgent
(Function)

Action Determines the arctangent (arctan) of a value.

Format ATN (numeric expression)

Example A = ATN(1)*180/π
Determines the arctan of 1 and assigns the corresponding angle (455) to
variable A.

Description The ATN function returns the arctangent value in radians between –p/2 and p/2.
Multiply this value by 180/p to convert the returned value to degrees.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The ATN function always returns a double-pre-
cision real number.

ATTR ATTRibute$
(Function)

Action Determines the write protect attribute of the specified file.

Format ATTR$ (filename or [#] file#)

Example ATTRIBUTE$ = ATTR$(” FILE.BAS”)

Determines the write protect attribute of the file FILE.BAS and assigns the result
to variable ATTRIBUTE$.

ATTR Reference Section 4

56

Description Determines if the file specified with a filename or file# is write protected or write
enabled and returns a letter indicating the status.
Specify the filename stored in a memory card as a character string. Specify the
file# as the number in which the file was opened with the OPEN statement.
The ATTR$ function returns a 2-character character string (attribute code)
corresponding to the write protect attribute assigned to the file specified with the
filename or file#. The attribute codes are described in the table below.

Attribute code Meaning

”__” The file has no write protect attribute allocated. The file specified
with the filename or file# is write enabled.

”_P” The file specified with the filename or file# is write protected.

”E_” The file specified with the filename or file# is coded.

Note _ indicates a blank

AUTO AUTOmatic numbering
(Command)

Action Automatically generates line numbers when the program is keyed in.

Format AUTO [initial value] [,increment]

Example AUTO 1000, 20

The line numbers 1000,1020, 1040, ... are displayed automatically.

Description When the AUTO command is input, the line number initial value is displayed at
the start of the next line and the cursor stops to the right of this line number. Sub-
sequently, each time the Return Key is pressed to input a line, the present line
number plus the specified increment is displayed at the start of the next line.
The default value of the initial value is 10. The default value of the increment is
10. Both the initial value and increment may be omitted.
If a line number already exists, an asterisk (*) is displayed after the line number.
Press the CTRL+C or STOP Keys to end automatic line number generation.

AUTOLVL AUTO LeVeL
(Function)

Action Determines the ideal binary level from density histogram data.

Format AUTOLVL (algorithm, array name, qualifier)

Example AL = AUTOLVL (0, H, 0)

The ideal binary level will be obtained from the histogram data of array H.

Description The AUTOLVL determines the ideal binary level from the array data, which is
specified with the array name, where the histogram data obtained with the
HISTGRAM command is stored.
Always set the algorithm to 0.
The qualifier specifies the first element used in the histogram data array.
Normally set to 0.

BACKDISP BACKground DISPlay
(Command)

Action Sets the type of display for the image outside the window.

Format BACKDISP display image [, [binary image plane#] [, binary reverse]]

Example BACKDISP 2

Sets a mask image (black) for the image outside the window.

BACKDISP Reference Section 4

57

Description BACKDISP sets how the image outside the window is displayed.

Set the display image to one of the following values.

0: Raw image
1: Binary image
2: Mask image (black)

If a binary image is specified as the display image, set the binary image plane
number between 0 and 7 to specify the plane for binary conversion. The binary
image corresponding to the specified binary image plane# is displayed outside
the window. The default value is 0.

The binary reverse value can be specified if a binary image is selected, as fol-
lows.

0: Normal monochrome display
1: Reversed monochrome display

The default value is 0.

The BACKDISP command sets the display only and does not affect the
measurements.

BCOPY Binary COPY
(Command)

Action Copies a binary image in VRAM.

Format BCOPY VRAM1, [page# 1], [plane# 1], VRAM2, [page# 2], [plane# 2] [, [X1] [,
[Y1] [, [X2] [, [Y2] [, [X] [, Y]]]]]]

Example BCOPY 2,, 0, 2,, 1

Copies the entire Plane 0 in window memory to Plane 1.

Description BCOPY copies a binary image between VRAMs.

Specify the numbers of the copy source and destination VRAMs, with VRAM1
and VRAM2, as follows.

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the setting for the page# 1 and page# 2 or set them to 0.

Specify the plane number of the copy source and destination VRAMs, with
plane# 1 and plane# 2.

To enclose the copy source image in a rectangular region, specify the top-left
and bottom-right coordinates as X1, Y1 and X2, Y2, respectively. The default
value of X1 and Y1 is 0 and the default value of X2 and Y2 is 511.

Specify the top-left coordinates of the copy destination copy start region with X,
Y. The default values of X, Y are 0,0.

When copying from a plane VRAM to a frame VRAM, if the plane# of the copy
destination (plane# 2) is specified, only the specified plane is copied, otherwise
all planes are copied.

The plane# of the copy source VRAM (plane# 1) must be specified when
copying from a frame VRAM to a plane VRAM. Data in planes write protected
with the MASKBIT command remains unchanged when data is copied to a
frame VRAM.

BCOPY Reference. . . Section 4

58

BCOPY2 Binary COPY2
(Command)

Action Makes enlarged and reduced copies of binary images in VRAM.

Format BCOPY2 VRAM1, [page# 1], [plane# 1], VRAM2, [page# 2], [plane# 2] [,
[XS1] [, [YS1] [, [XS2] [, [YS2] [, [XD1] [, [YD1] [, [XD2] [, YD2]]]]]]]]

Example BCOPY2 2,, 0, 2,, 1, 100, 100, 200, 200, 200, 200, 400,
400

Enlarges by a factor of 2 the rectangular region with corner coordinates
(100,100), (200,200) on plane 0 of the window memory and copies it to the
rectangular region with corner coordinates (200,200), (400,400) on plane 1.

Description BCOPY2 makes enlarged and reduced copies of binary images between
rectangular regions in VRAM.

Specify the numbers of the copy source and destination VRAMs, with VRAM1
and VRAM2, as follows.

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the setting for the page# 1 and page# 2 or set them to 0.

Specify the plane number of the copy source and destination VRAMs, with
plane# 1 and plane# 2.

Specify the top-left and bottom-right coordinates of the copy source rectangular
region as XS1, YS1 and XS2, YS2, respectively. The default value of XS1 and
YS1 is 0 and the default value of XS2 and YS2 is 511.

Specify the top-left and bottom-right coordinates of the copy destination
rectangular region as XD1, YD1 and XD2, YD2, respectively. The default value
of XD1 and YD1 is 0 and the default value of XD2 and YD2 is 511.

When copying from a plane VRAM to a frame VRAM, if the plane# of the copy
destination (plane# 2) is specified, only the specified plane is copied, otherwise
all planes are copied.

The plane# of the copy source VRAM (plane# 1) must be specified when
copying from a frame VRAM to a plane VRAM. Data in planes write protected
with the MASKBIT command remains unchanged when data is copied to a
frame VRAM.

BEEP BEEP
(Command)

Action Turns the buzzer on and off.

Format BEEP [switch]

Example BEEP 1

The buzzer sounds.

Description The BEEP command turns the buzzer on and off.

Specify the switch parameter as 0 or 1, as follows.

0: Stop the buzzer.
1: Continuously sound the buzzer.

The buzzer sounds for a fixed time if the parameter is omitted.

After the buzzer is turned on, it can be turned off again only with the BEEP com-
mand. The buzzer remains on if program operation stops.

BEEP Reference Section 4

59

BOX BOX
(Command)

Action Draws a rectangle in VRAM.

Format BOX X1, Y1, X2, Y2, VRAM [, [page#] [,[drawing density or drawing mode] [,
lineart]]]

Example BOX 0, 0, 128, 255, 2,, 128, 0

Draws a rectangle on Plane 7 of the window memory with opposing corner
coordinates (0,0), (128,255).

Description The BOX command draws a rectangle between the opposing corner
coordinates (X1, Y1) and (X2, Y2).
Specify the VRAM where the rectangle is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.
Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.
The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : 0 written to memory
!0: 1 written to memory

The drawing mode settings operate as follows.
OR: The current contents of the image memory ORed with 255 are written to
memory.
NOT: 0 is written to memory
XOR: The current contents of the image memory are inverted.
The default value for the drawing mode is OR.

Specify with the lineart parameter if the rectangle is an outline only or filled.
0: Filled rectangle
1: Rectangle outline only
The default value is 0 (filled).

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

BUSY BUSY
(Command)

Action Controls the BUSY signal output status.

Format BUSY 0 or 1

Example BUSY 1

Turns ON the BUSY signal output of all connected Terminal Block Unit or Parallel
I/O Units.

Description The BUSY command turns the BUSY signal output ON and OFF for the Terminal
Block and Parallel I/O Units.
Set the parameter to 0 to turn OFF the BUSY signal or to 1 to turn ON the BUSY
signal.
When multiple Terminal Block or Parallel I/O Units are connected, the BUSY
signals are controlled simultaneously for all Units.

BUSY Reference Section 4

60

CALL CALL
(Command)

Action Calls a subroutine defined between the SUB and END SUB commands.

Format CALL label (argument [, argument...])

Example CALL *SUB1 (PARAM1, PARAM2$, 1)

Calls the subroutine SUB1.

Description The CALL command calls subroutines in which local variables are used.
The label parameter specifies a label designated with the SUB command.
The arguments specify data to be transferred to the subroutine. The arguments
can be any type of variable, constant, or expression, but the argument type must
match the type of argument used with the SUB command.
If a variable specified as an argument is changed in the subroutine, the value of
the argument changes simultaneously. No logical limitation is placed on the
number of arguments. However, the command line can physically
accommodate up to 255 characters only.
An entire array cannot be used as an argument. Data from an array can be used
as an argument by specifying individual elements of the array in the form: array
name(qualifier). If multiple arguments are specified with the CALL command, no
variable name can be used more than once.

CAMCHK CAMera CHecK
(Function)

Action Determines the connection status of the camera specified with the camera
number.

Format CAMCHK (camera#)

Example A = CAMCHK (1)

Assigns the connection status of camera#1 to variable A.

Description The CAMCHK function determines the status of the camera specified with the
camera number (0 to 7), and returns a value as follows:

0: Connected
–1: Not connected

CAMERA CAMERA
(Command)

Action Switches cameras.

Format CAMERA camera#

Example CAMERA 2

Switches to camera# 2.

Description The CAMERA commands switches to the camera specified by the camera
number (0 to 7).
The F300 cannot simultaneously receive inputs from multiple cameras. Only the
image from the camera selected with the CAMERA command is processed.

CAMMODE CAMera MODE
(Command)

Action Selects the image output from a Camera I/F Unit.

Format CAMMODE output image

Example CAMMODE 1

Selects the image from the Camera I/F Unit internal memory as the output
image.

CAMMODE Reference Section 4

61

Description The CAMMODE command is valid for the Camera I/F Unit (normal/simulta-
neously) and Camera I/F Unit (shutter/simultaneously) only.
Both the Camera I/F Unit (normal/simultaneously) and Camera I/F Unit (shutter/
simultaneously) have a built-in image memory able to hold one image screen
from a single camera. The CAMMODE selects if the image output from the Cam-
era I/F Unit to the IMP Unit is the image output directly from the camera or the
image from the Camera I/F Unit internal video memory.

The parameter of the CAMMODE command selects the output image, as
follows:

0: Output the camera image directly.
1: Output the image from the internal video memory.

Images are written to the video memory with the FLASH command.

If multiple Camera Units with internal memory are connected, the setting with the
CAMMODE command applies to all Units.

CDBL Convert DouBLe
(Function)

Action Converts a value to a double-precision value.

Format CDBL (numeric expression)

Example DBL# = CDBL(A!)

Converts the value of the single-precision real number A! to a double-precision
real number and assigns it to the double-precision real number variable DBL#.

Description The CDBL function returns the specified numeric expression converted to a
double-precision real number.

The CDBL function converts values to a double-precision real value. It does not
change the number of significant digits of the returned value. Consequently, the
precision of the returned value is the same as the precision of the value before
conversion.

The following type conversion functions are also available:

CINT function: Converts a value to an integer.
CLNG function: Converts a value to a long integer
CSNG function: Converts a value to a single-precision real number.

CHAIN CHAIN
(Command)

Action Calls and transfers control to a specified program.

Format 1. CHAIN ”filename” [, line#] [, ALL]

2. CHAIN MERGE ”filename” [, line#] [, ALL] [, DELETE line# 1 – line# 2]

Example CHAIN MERGE ”PRO1.BAS”, 1000, ALL

Merges the program PRO1.BAS with the current program and executes it from
line 1000. All variables remain unchanged.

Description The CHAIN command reads the program with the specified filename from the
memory card and executes the program from the specified line#.

If no line# parameter is specified, the program is executed from the beginning.

If the command is specified in format 1, the current program is cleared before the
specified program is read.

If the command is specified in format 2, the current program is merged with the
new program. All variables remain unchanged if the ALL parameter is specified.

CHAIN Reference. . . . Section 4

62

If ALL is not specified, all numeric variables become 0 and character variables
become blank (null). Use the COMMON command to leave some of the
variables unchanged.

If the DELETE parameter is used, the program lines between the specified line#
1 and line# 2 are deleted before the programs are merged.

Labels can be used instead of numbers for the line#, line# 1, and line# 2
parameters.

CHANGE CHANGE scene
(Command)

Action Changes the measuring conditions to the scene setting conditions set in the
Menu mode.

Format CHANGE scene#

Example CHANGE 2

Switch to the scene 2 measuring conditions.

Description The CHANGE command refers to the scene setting data previously set in the
Menu mode and changes the setting data to the scene specified with the
scene#.

The following items can be changed:

• Drawing the window graphic (WINDOW)

• Measuring mode for each binary plane (MMODE)

• Camera selection (CAMERA)

• Displayed image (DISP, FILTERIN)

• Window display image (WDISP)

• Filtering (FILTER, FILTDATA)

• Binary level (LEVEL)

However, the following settings can only be made from the Menu mode, they are
not possible with the CHANGE command:

• Measurement with multiple camera

• Window displacement compensation

• Shading displacement compensation

• Window measurement items

• Window evaluation conditions

If measurement with multiple cameras is selected in the Menu mode, the camera
specified in the Menu mode for the display is used with the CHANGE command.

CHDIR CHange DIRectory
(Command)

Action Changes the current directory.

Format CHDIR directory name

Example CHDIR ”.. SRC”

Switches the current directory to directory SRC, which is on the same
hierarchical level as the current level (that is, both directories are contained in
the same directory on the next level of the hierarchy.)

CHDIR Reference. . . . Section 4

63

Description Specify the directory name parameter as a character string. Specify the name of
a directory existing on the memory card. An error (Path not found) occurs if the
specified directory does not exist on the memory card.
To specify an absolute path name for the directory, delimit the directory names
with ¥ signs. The total length, including the ¥ signs, must not exceed 127
characters.
Specify the directory name as [“..”] to switch the current directory up to the next
hierarchy.

CHR$ CHaRacter$
(Function)

Action Determines the character corresponding to a character code.

Format CHR$ (numeric expression)

Example A$ = CHR$ (97)

Assigns the character “a” corresponding to character code 97 (= 61H) to variable
A$.

Description The CHR$ functions returns the 1-byte character or the control code
corresponding to the character code.
Specify the numeric expression as an integer between 0 and 255.
The ASV function ASC has the opposite action to the CHR$ function. ASC
returns the decimal character code corresponding to a character.

CINT Convert INTeger
(Function)

Action Converts a value to an integer.

Format CINT (numeric expression)

Example SEI% = CINT (A#)

Converts the value of the double-precision real number A# to an integer and
assigns it to the integer variable SEI%.

Description The CINT function rounds off the decimal places of the specified numeric ex-
pression and returns an integer.
An error occurs if the integer returned by the CINT function does not lie between
–32768 (–216) and 32767 (216–1).
The following type conversion functions are also available:

CDBL function: Converts a value to a double-precision real number.
CLNG function: Converts a value to a long integer
CSNG function: Converts a value to a single-precision real number.

The FIX and INT functions are similar to the CINT function. However, the FIX
function simply cuts off (rounds down) the decimal places from the specified val-
ue. The INT function also rounds down the specified value, but this function
never returns a value larger than the value specified with the numeric expres-
sion.
Examples of the actions of the FIX, INT, and CINT function are shown in the table
below.

Specified function Returned value

Positive numeric
expression

FIX (1.7)
INT (1.7)
CINT (1.7)

1
1
2

Negative numeric
expression

FIX (–1.7)
INT (–1.7)
CINT (–1.7)

–1
–2
–2

CINT Reference Section 4

64

CIRCLE CIRCLE
(Command)

Action Draws a circle in VRAM.

Format CIRCLE X, Y, R, VRAM , [, [[page#]] [, [drawing density or drawing mode] [,
lineart]]]

Example CIRCLE 128,255, 25, 2,, 128, 0

Draws a circle on Plane 7 of the window memory with center coordinates (128,
255) and radius (25).

Description The CIRCLE command draws a circle around the center coordinates (X,Y) with
the specified radius (R).

Specify the VRAM where the circle is drawn with a number, as follows:

0: Character memory

1: Graphic memory

2: Window memory

3: Image memory

4: Shading memory

Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : 0 written to memory

!0: 1 written to memory

The drawing mode settings operate as follows.

OR: The current contents of the image memory ORed with 255 are
written to memory.

NOT: NOT: 0 is written to memory

XOR: XOR: The current contents of the image memory are inverted.

The default value for the drawing mode is OR.

Specify with the lineart parameter if the circle is an outline only or filled.

0: Filled circle

1: Circle outline only

The default value is 0 (filled).

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

CIRCLE Reference. . . Section 4

65

CLEAR CLEAR
(Command)

Action Initializes variables.

Format CLEAR

Example CLEAR

Description The CLEAR command initializes all numeric variables to 0 and all character
variables to a blank (null).

CLNG Change to LoNG integer
(Function)

Action Converts a value to a long integer.

Format CLNG (numeric expression)

Example A& = CLNG(B#)

Converts the value of the double-precision real number B# to a long integer and
assigns it to the long integer variable A&.

Description The CLNG function rounds off the decimal places of the specified numeric ex-
pression and returns a long integer.

An error occurs if the long integer returned by the CLNG function does not lie
between –2147483648 (–231) and 2147483647 (231–1).

The following type conversion functions are also available:

CDBL function: Converts a value to a double-precision real number.

CINT function: Converts a value to an integer.

CSNG function: Converts a value to a single-precision real number.

CLOSE CLOSE
(Command)

Action Closes an open file.

Format CLOSE [file# [, file#] ...]

Example CLOSE #1

Closes the file which was opened as file# 1.

Description The CLOSE command closes a file previously opened for data I/O.

Specify the same file# used when the file was opened with the OPEN command.

After a file is closed with the CLOSE command, data I/O operations on the file
are not possible until the file is reopened with the OPEN command.

After a file is closed with the CLOSE command, the same file# can be used to
open a different file with the OPEN command. Alternatively, the closed file can
be reopened with the original file#.

Multiple file numbers (file#) can be specified to close multiple files simultaneous-
ly with a single CLOSE command. All open files are closed if the file# is omitted.
Similarly, all files are closed automatically when the END, NEW, or STOP com-
mand is executed.

When a file opened for data output is closed, all data remaining in the file buffer is
written to the file before it is closed. The CLOSE command must be used to
ensure this data is correctly written to the file.

CLOSE Reference. . . . Section 4

66

CLS CLear Screen
(Command)

Action Clears the specified VRAM.

Format CLS [VRAM [, [page#] [, plane#]]]

Example CLS 2,, 3

Clears plane 3 of the window memory.

Description The CLS command clears the specified VRAM.

Specify the VRAM to be cleared with a number, as follows.

0: Character memory

1: Graphic memory

2: Window memory

3: Image memory

4: Shading memory

Omit the page# or set to 0.

Specify the plane to be cleared with the plane# parameter. All planes are cleared
if this parameter is omitted. When a frame memory is specified, the contents of
planes write protected with the MASKBIT command remain unchanged.

COLOR COLOR
(Command)

Action Changes the text display. character attribute.

Format COLOR attribute code

Example COLOR 2

Sets the character attribute to overline.

Description The COLOR command changes the character attribute to the specified
attribute.

Specify the attribute with a number, as follows.

0: Clear attribute

2: Overline

4: Underline

7: Reverse

COLOR@ COLOR@
(Command)

Action Changes the character attribute within a rectangular region of the text display.

Format COLOR@ (X1, Y1) – (X2, Y2) [,attribute code]

Example COLOR@ (0, 0) – 31, 5), 7

Reverses the characters between line 0, character 0 and line 5, character 31.

Description The COLOR@ command changes the character attribute to the specified
attribute within the rectangular region between the opposing corners specified in
character coordinates (X1, Y1) and (X2, Y2).

Specify the horizontal character coordinates X1 and X2 as an integer between 0
and 63 and the vertical character coordinates Y1 and Y2 between as an integer
between 0 and 24.

COLOR@ Reference. . Section 4

67

Specify the attribute code with a number, as follows.

0: Clear attribute

2: Overline

4: Underline

7: Reverse

The default value is 7 (reverse).

COM ON/OFF/STOP COMmunication ON/OFF/STOP
(Command)

Action Enables, disables, or stops interrupts from the RS-232C.

Format COM (RS-232C port#) ON or OFF or STOP

Example COM(1) ON

Permits branching to the interrupt routine when input data is received via the
RS-232C channel 0.

Description Specify the port# as 1 or 2. The default value is 1. The port# is represented by n in
the description below.

COM(n) ON Branches to the interrupt subroutine at the specified line# or label when input
data is received via the specified port#. The line# or label must be specified with
the ON COM GOSUB statement before the COM(n) ON command is executed.
In addition, use of the RS-232C communication port must be declared with the
OPEN command before the COM(n) ON command is executed.

Example:

10 OPEN ”COM:9600N 82N” AS #1

20 ON COM GOSUB *LABEL1

30 COM ON

70 COM OFF

100 *LABEL1

200 RETURN

COM (n) OFF Disables branching to the interrupt routine when input data is received via the
specified port#.

COM (n) STOP Temporarily stops operation when input data is received via the specified port#.
Operation does not branch to the interrupt subroutine. Operation will branch to
the interrupt subroutine after the COM (n) ON command is executed.

Note The COM (n) OFF status must be set before the program execution ends.

COMMON COMMON
(Command)

Action Transfers variables to a program linked with the CHAIN command.

Format COMMON variable name [, variable name ...]

Example COMMON X, Y, A$, B

Transfers variables X, Y, A$ and B to a specified program in the CHAIN com-
mand.

COMMON Reference. Section 4

68

Description The COMMON command transfers variables to another program. The
COMMON command is used as a pair with the CHAIN command. The
COMMON statement must be declared before the CHAIN statement, that is, at
the start of the program.

Variables must not be duplicated in a single COMMON command.

Add parentheses to declare array variables, e.g., B().

Use the ALL parameter in the CHAIN statement to transfer all variables to the
linked program.

Example:
10 DIM B(100), C(10), D(10)

50 CHAIN ”TEST.BAS”,, ALL

CONSOLE CONSOLE
(Command)

Action Sets the text display mode.

Format CONSOLE [[scroll start line] [, [number of scroll lines] [, [function key display
switch] [, character mode]]]]

Example CONSOLE ,,, 1

Sets the text display mode to the graphic character mode and hold all other
parameter settings.

Description The CONSOLE command sets the text display mode.

The area designated by the scroll start line and number of scroll lines parame-
ters. The screen clear operation acts on this specified scroll area. The default
value for the scroll start line is 0. If the number of scroll lines is not specified, the
previous setting is maintained.

The function key display switch setting specifies whether the function key menu
is displayed on the bottom line of the screen. The function key menu is not
displayed if this parameter is set to 0. If the function key display switch is not
specified, the previous setting is maintained.

Set the character mode to 1 to select the graphic character mode. This mode
permits display of the graphic characters (character codes &H80 to &H9F and
&HE0 to &HF7) but disables the Japanese character display.

Set the character mode to 0 to enable the Japanese character display but
disable display of the graphic characters. If no setting is specified, the previous
setting is maintained.

CONT CONTinue
(Command)

Action Continues execution of a stopped user program.

Format CONT

Example CONT

Restarts program execution.

Description The CONT command is a direct command to continue execution of a user
program stopped by pressing the STOP or CTRL+C Keys or by executing the
STOP command.

Operations such as printing the variable names in the direct mode are possible
while the program is stopped. However, a program cannot be continued if it was
modified while execution was stopped.

CONT Reference Section 4

69

COS COSine
(Function)

Action Determines the cosine of an angle.

Format COS (numeric expression)

Example A! = COS(60*3.14159/180)
Assigns the cosine of 60% (0.50000) to variable A!.

Description Returns the cosine as a value between –1 and 1.
The angle in the numeric expression is set in radians.
The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The COS function always returns a double-
precision real number.

CSNG Convert SiNGle
(Function)

Action Converts a value to a single-precision value.

Format CSNG (numeric expression)

Example SNG! = CSNG (A#)

Converts the value of the double-precision real number A# to a single-precision
real number and assigns it to the single-precision real number variable SNG!.

Description The CSNG function returns the specified numeric expression converted to a
single-precision real number.
The CSNG function converts values to a single-precision real value between
–1.70141E+38 and –1.70141E+38. An error occurs if the value lies outside this
range.
The following type conversion functions are also available:

CDBL function: Converts a value to a double-precision real number.
CLNG function: Converts a value to a long integer
CINT function: Converts a value to an integer.

CSRLIN CurSoR LINe
(Function)

Action The CSRLIN function determines the number of the line where the character
cursor is positioned.

Format CSRLIN
Example LN% = CSRLIN

Assigns the current cursor line position to the variable LN%.

Description Returns the line position of the character cursor (the Y-axis character
coordinate).
The value returned is between 0 and 24.
Use the POS function to determine the cursor character position along the line.

CURSOR CURSOR
(Command)

Action Draws the cross cursor in VRAM.

Format CURSOR X, Y, angle, VRAM [,[page#][,drawing density or drawing mode]]

Example CURSOR 200, 250, 45, 1

Draws a cross cursor at an angle of 45% in the graphic memory at coordinate
position (200,250).

CURSOR Reference. . Section 4

70

Description The CURSOR command draws a cursor at coordinate position (X,Y) at the
specified angle.

The angle parameter specifies the tilt angle of the cross cursor.

Specify the VRAM where the cursor is drawn with a number, as follows.

0: Character memory

1: Graphic memory

2: Window memory

3: Image memory

4: Shading memory

Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : 0 written to memory

!0: 1 written to memory

The drawing mode settings operate as follows.

OR: The current contents of the image memory ORed with 255 are
written to memory.

NOT: NOT: 0 is written to memory

XOR: XOR: The current contents of the image memory are inverted.

The default value for the drawing mode is OR.

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

CVD ConVert to Double
(Function)

Action Converts an 8-byte character string to a double-precision real number.

Format CVD (8-byte character string)

Example C# = CVD(C$)

Converts a character-type numeric data variable C$ created with the MKD$
function to a double-precision real number and assigns it to variable C#.

Description The CVD function returns the value of an 8-byte character string converted to a
double-precision real number.

Because numeric data cannot be handled in a random access file, a a double-
precision real number must be converted to a character-type numeric data
variable (character string) with the MKD$ function before it is written to a random
access file. The CVD function converts character-type numeric data read from a
random access file back to a double-precision real number.

The CVD function has the opposite action to the MKD$ function. The MKD$
function converts numeric data to a character string.

Character-type numeric data is read from a random access file with the GET#
command to the variable areas defined with the FIELD# command in the file
buffer.

CVD Reference Section 4

71

CVI ConVert to Integer
(Function)

Action Converts a 2-byte character string to an integer.

Format CVI (2-byte character string)

Example A% = CVI(A$)

Converts a character-type numeric data variable A$ created with the MKI$
function to an integer and assigns it to variable A%.

Description The CVI function returns the value of a 2-byte character string converted to an
integer.

Because numeric data cannot be handled in a random access file, an integer
must be converted to a character-type numeric data variable (character string)
with the MKI$ function before it is written to a random access file. The CVI
function converts character-type numeric data read from a random access file
back to an integer.

The CVI function has the opposite action to the MKI$ function. The MKI$
function converts numeric data to a character string.

Character-type numeric data is read from a random access file with the GET#
command to the variable areas defined with the FIELD# command in the file
buffer.

CVL ConVert Long integer
(Function)

Action Converts a 4-byte character string to a long integer.

Format CVL (4-byte character string)

Example A& = CVL(A$)

Converts a character-type numeric data variable A$ created with the MKL$
function to a long integer and assigns it to variable A&.

Description The CVL function returns the value of a 4-byte character string converted to a
long integer.

Because numeric data cannot be handled in a random access file, a long integer
must be converted to a character-type numeric data variable (character string)
with the MKL$ function before it is written to a random access file. The CVL
function converts character-type numeric data read from a random access file
back to long integer data.

The CVL function has the opposite action to the MKL$ function. The MKL$
function converts numeric data to a character string.

Character-type numeric data is read from a random access file with the GET#
command to the variable areas defined with the FIELD# command in the file
buffer.

CVS ConVert to Single
(Function)

Action Converts an 4-byte character string to a single-precision real number.

Format CVS (4-byte character string)

Example B! = CVS(B$)

Converts a character-type numeric data variable B$ created with the MKS$
function to a single-precision real number and assigns it to variable B!.

CVS Reference Section 4

72

Description The CVS function returns the value of an 4-byte character string converted to a
single-precision real number.

Because numeric data cannot be handled in a random access file, a a single-
precision real number must be converted to a character-type numeric data
variable (character string) with the MKS$ function before it is written to a random
access file. The CVS function converts character-type numeric data read from a
random access file back to a single-precision real number.

The CVS function has the opposite action to the MKS$ function. The MKS$
function converts numeric data to a character string.

Character-type numeric data is read from a random access file with the GET#
command to the variable areas defined with the FIELD# command in the file
buffer.

DATA DATA
(Command)

Action Defines the integer constants and character constants read with the READ com-
mand.

Format DATA constant [, constant [, constant...]]

Example DATA 10, 20, 30, 40

Defines the integer constants 10, 20, 30, and 40 as decimal data.

DATA 5.5, ”OVL”, 200
DATA 5.5, OVL, 200

Defines the real number 5.5, character string ”OVL,” and integer 200 as data.

Description The DATA statement is not executable. It can be declared anywhere in the
program.

The constants (numeric and character) are delimited by commas (,).

A constant cannot be defined as a constant expression, such as 10*2.

When one of the character strings described below is declared as a constant, it
must be enclosed in double quotations (”).

• A character string containing a meaningful symbol such as a comma (,), colon
(:), or period (.)

• A character string starting or ending with a meaningful blank.

The constants defined with the DATA command are read sequentially to the
variables defined with the READ command.

Normally the DATA statement constants and the READ statement variables
have the same format. However, it is possible to specify character variables for
the READ statement which are read as the character-type numeric variables in
the corresponding DATA statement.

DATA statement
constant format

READ statement
variable format

Results of executing
READ statement

Numeric constant Numeric variable Read as a normal number

Numeric constant Character variable Number read as a
character string

Character constant Character variable Read as a normal
character string

Character constant Numeric variable Error

A RESTORE command before the READ command specifies the line containing
the DATA statement to read. If the DATA statement is not specified by a

DATA Reference Section 4

73

RESTORE command, the position of the data read depends on the execution
status of the READ command.

Execution status of READ command Data to be read

First execution in program Sequentially reads the data beginning with the first data statement in the
program.

Second and succeeding executions Continues reading the data sequentially after all remaining data from the first
execution has been read.

DATE$ DATE$
(Command-Function)

Action Displays and sets the date in the internal clock.

Format Format 1 DATE$

Format 2 DATE$=”yy/mm/dd”

Example PRINT DATE$

Displays the date returned in DATE$.

DATE$ = ”92/11/10”

Sets the date to 10 November, 1992.

Description Reads the date from the F300.

The F300 has no internal clock. The clock is set to 00/00/00 on 80/01/01 when
the power supply is turned on. The time elapsed since the power was turned on
is counted. Therefore, it is not possible to read the correct date with the DATE$
function until the clock has been set.

A character string with the year, month, and day (yy/mm/dd) delimited by
slashes is returned when the DATE$ function is executed. The format is shown
below. The last two digits of the year are returned.

YY/MM/DD

Day - returns two characters between 01 to 31

Month - returns two characters between 01 to 12

Year - returns two characters between 80 and 99

DEF FN DEFine FunctioN
(Command)

Action Defines a user function.

Format DEF FN name [(parameter [, parameter...])] = expression

Example DEF FNX% (X%) = X% * X%

Defines a function to square the parameter.

Description The DEF function defines a function and its name.

Function names are subject to the same restrictions as variable names.

The parameters have the same names as the variables used inside the function.
These variable names are used only for evaluation of the expression inside the
function. The same variable names can be used elsewhere inside the program.

The expression declares the operation of the function. It must not exceed one
line.

DEF FN Reference. . . Section 4

74

The function is called in the format: FN name (variable). It is not necessary for
the variable name used to match the name used in the expression declaring the
operation of the function, however the variable format must be the same.
The function must be declared before it can be called.

DEF FN...END DEF DEFine FuNction END DEFine
(Command)

Action Defines a user function block.

Format DEF FN name [(parameter [, parameter...])]
 statement in DEF FN block

END DEF
Example DEF FNX% (X%)

 FNX% = A% + X%
END DEF

Defines function X.

Description Defines a user function block.
The function names must conform to restrictions covering variable names.
The parameters have the same names as the variables used inside the function.
These variable names are used only for evaluation of the expression inside the
function. The same variable names can be used elsewhere inside the program.
It is possible to describe operation expressions as statements in more than one
line in a DEF FN statement block.
Use the format FN name (variable) to have access to a function. A DEF FN state-
ment must exist before the above format.
No further DEF FN ... END DEF declaration can be nested inside a DEF FN
statement block. The GOTO command must not be used to jump into or out of a
DEF FN statement block.
Use the EXIT DEF command to get out of a DEF FN statement block.

DEFDBL DEFine DouBLe
(Command)

Action Declares variables as double-precision real number variables.

Format DEFDBL character range [,character range...]

Example DEFDBL E–H, Z

Declares all variables starting with the letters E, F, G, H, and Z as double-preci-
sion real numbers.

Description Declares variables starting with characters in the specified character range as
double-precision real number variables.
Only single characters can be specified in the character range. Specify multiple
characters using the minus (–) sign.
The type statements (%, &, !, #, $) take priority over type declarations with this
command.

DEFINT DEFine INTeger
(Command)

Action Declares variables as integers.

Format DEFINT character range [,character range...]

Example DEFINT A, F–I

Declares all variables starting with the letters A, F, G, H, and I as integers.

DEFINT Reference. . Section 4

75

Description Declares variables starting with characters in the specified character range as
integer variables.

Only single characters can be specified in the character range. Specify multiple
characters using the minus (–) sign.

The type statements (%, &, !, #, $) take priority over type declarations with this
command.

DEFLNG DEFine LoNG
(Command)

Action Declares variables as long integers.

Format DEFLNG character range [,character range...]

Example DEFLNG B, C–F

Declares all variables starting with the letters B, C, D, E, and F as long integers.

Description Declares variables starting with characters in the specified character range as
long integer variables.

Only single characters can be specified in the character range. Specify multiple
characters using the minus (–) sign.

The type statements (%, &, !, #, $) take priority over type declarations with this
command.

DEFSNG DEFine SiNGle
(Command)

Action Declares variables as single-precision real number variables.

Format DEFSNG character range [,character range...]

Example DEFSNG A, B–D

Declares all variables starting with the letters A, B, C, and D as single-precision
real numbers.

Description Declares variables starting with characters in the specified character range as
single-precision real number variables.

Only single characters can be specified in the character range. Specify multiple
characters using the minus (–) sign.

The type statements (%, &, !, #, $) take priority over type declarations with this
command.

DEFSTR DEFine STRing
(Command)

Action Declares variables as character variables.

Format DEFSTR character range [,character range...]

Example DEFSTR A, B–D

Declares all variables starting with the letters A, B, C, and D as character strings.

Description Declares variables starting with characters in the specified character range as
character string variables.

Only single characters can be specified in the character range. Specify multiple
characters using the minus (–) sign.

The type statements (%, &, !, #, $) take priority over type declarations with this
command.

DEFSTR Reference. . Section 4

76

DELETE DELETE
(Command)

Action Deletes all lines in a specified range of the program.

Format DELETE [line# 1] [–line# 2]

Example DELETE 100–190

Deletes all lines from 100 to 190.

Description Deletes all lines between line# 1 and line# 2.

Only line# 1 is deleted if line# 2 is not specified.

Lines from the start of the program to line# 2 are deleted if line# 1 is not specified.

Use a period (.) instead of line# 1 or line# 2 to specify the current program line.
The current line is indicated by the pointer. The current line is the last line input
during program creation or the last line displayed with the LIST command.

It is not possible to omit both the line# 1 and line# 2 parameters.

DEVICE DEVICE
(Command)

Action Specifies the standard OVL input and output devices.

Format DEVICE [”KYBD:” or ”COM:”], [”SCRN:” or ”COM:”]

Example DEVICE ”COM:”, ”COM:”

Specifies program input and output through the RS-232C port.

Description The input device can be selected as the keyboard or RS-232C port. The output
device can be selected as the video monitor or the RS-232C port.

The first parameter specifies the input device, as one of the following.

KYBD: Keyboard

COM: RS-232C

Input from the keyboard is disabled if the input device is set to the RS-232C port.

The second parameter specifies the input device, as one of the following.

SCRN: Video monitor

COM: RS-232C

Subsequent characters are output to the RS-232C port if the output device is set
to RS-232C.

Previous settings remain unchanged if both parameters are omitted.

DIM DIMension
(Command)

Action Defines an array variable.

Format DIM variable name (qualifier max. value [, qualifier max. value ...]) [, variable
name (qualifier max. value [, qualifier max. value...])]

DIM Reference Section 4

77

Example DIM A$(50)

Defines a one-dimensional character array variable A$(50).

Defines a two-dimensional single-precision real number array variable
B$(10,3).

Description Declares the variable format, number of dimensions, and qualifier maximum
values of an array variable and assigns the array variable to an area of memory.

The array variable format is specified with the type statements (%, !, #, $, &). The
default type if the type statement is omitted is a single-precision real number
variable.

The number of qualifier maximum values indicates the number of dimensions of
the array. If multiple dimensions are specified, the qualifier maximum values are
delimited by commas (,).

The qualifier maximum value parameters specify the maximum value a qualifier
can have. The qualifier minimum value can be specified as 0 or 1 with the
OPTION BASE statement.

The default value is 0 if no OPTION BASE statement is specified. Note that
executing the command DIM A(20) if no OPTION BASE statement is specified in
the program results in an array with elements from 0 to 20, that is, 21 elements.

DIN Data IN
(Function)

Action Reads the status of the Terminal Block Unit or Parallel I/O Unit input port.

Format DIN (bit address [, size])

Example A = DIN (2, 8)

Reads the status of the eight bits 2 to 9 from the Terminal Block Unit or Parallel
I/O Unit and assigns the bits to variable A.

Description The DIN function reads the data input to the Terminal Block Unit or Parallel I/O
Unit input ports.

If both Terminal Block Units and Parallel I/O Units are connected, the DIN
function does not differentiate between the two. The maximum number of input
bits becomes the total number of the input bits for all Units.

Specify the number of input data bits with the size parameter. The default value
is 8. Specify the data input start position with the bit address parameter.

Data is input as integers with + or – signs.

DISPLAY DISPLAY
(Command)

Action Sets the display image.

Format DISPLAY display image [, image pathway]

Example DISPLAY 31

Displays all images.

DISPLAY Reference. . Section 4

78

Description The DISPLAY command specifies the image displayed on the video monitor as a
display number between 0 and 31.

The decimal number between 0 and 31 set for the display image represents a
binary number. The image corresponding to a bit set to 1 is displayed. The
relationship between the bits and displayed images is shown below. Normally
leave bit 0 set to 1.

Bit 0: Camera image

Bit 1: Paint/pattern matching window memory image

Bit 2: Window memory image

Bit 3: Graphic memory image

Bit 4: Character memory image

The image pathway parameter specifies the image bus taken by the displayed
image. The default value is 2.

0: Binary image and raw image .. Image bus 0

1: Binary image ... Image bus 1, raw image ... Image bus 0

2: Binary image ... Image bus 0, raw image ... Image bus 1

3: Binary image and raw image .. Image bus 1

DO–LOOP REPEAT DO–LOOP REPEAT
(Command)

Action Repeats the statement between DO and LOOP the specified number of repeti-
tions.

Format DO
Statements in DO block

LOOP REPEAT number of times

Example DO
PRINT I
LOOP REPEAT 20

Displays variable I 21 times.

Description The DO–LOOP REPEAT command executes the statement between DO and
LOOP the specified number of times.

The statements in the DO block are executed the number of times specified by
the (number of times parameter + 1).

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

DO–LOOP UNTIL DO–LOOP UNTIL
(Command)

Action Repeats the statements between DO and LOOP until the condition is fulfilled.

Format DO
Statements in DO block

LOOP UNTIL conditional expression

Example I = 20
DO
PRINT I
I = I + 1
LOOP UNTIL I > 29

Displays the integers from 20 to 29.

DO–LOOP UNTIL Reference Section 4

79

Description The DO–LOOP UNTIL command executes the statement between DO and
LOOP until the condition is fulfilled.

The statements in the DO block are executed repeatedly while the conditional
expression is false.

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

DO–LOOP WHILE DO–LOOP WHILE
(Command)

Action Repeats the statements between DO and LOOP while the condition is fulfilled.

Format DO
Statements in DO block

LOOP WHILE logical expression

Example I=0
DO
PRINT I
I=I+1
LOOP WHILE I<10

Displays the integers from 0 to 9.

Description The DO–LOOP WHILE command executes the statement between DO and
LOOP while the condition is fulfilled.

The statements in the DO block are executed repeatedly while the logical
expression is true.

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

DO REPEAT–LOOP DO REPEAT–LOOP
(Command)

Action Repeats the statements between DO and LOOP the specified number of times.

Format DO REPEAT number of times

Statements in DO block

LOOP

Example DO REPEAT 20
PRINT I
LOOP

Displays variable I 20 times.

Description The DO REPEAT and LOOP command executes the statement between DO
and LOOP the specified number of times.

The statements in the DO block are executed the specified number of times.

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

DO REPEAT–LOOP Reference. Section 4

80

DO UNTIL–LOOP DO UNTIL–LOOP
(Command)

Action Repeats the statements between DO and LOOP until the condition is fulfilled.

Format DO UNTIL logical expression

Statements in DO block

LOOP

Example I=25
DO UNTIL I <20
PRINT I
I=I–1
LOOP

Displays the integers from 25 to 20.

Description The DO UNTIL–LOOP command executes the statement between DO and
LOOP until the condition is fulfilled.

The statements in the DO block are executed repeatedly while the logical
expression is false.

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

DO WHILE–LOOP DO WHILE–LOOP
(Command)

Action Repeats the statements between DO and LOOP while the condition is fulfilled.

Format DO WHILE logical expression

Statements in DO block

LOOP

Example I=0
DO WHILE I <10
PRINT I
I=I+1
LOOP

Displays the integers from 0 to 9.

Description The DO WHILE–LOOP command executes the statement between DO and
LOOP while the condition is fulfilled.

The statements in the DO block are executed repeatedly while the logical
expression is true.

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

DOUT Data OUTput
(Command)

Action Outputs data to a Terminal Block Unit or Parallel I/O Unit.

Format DOUT output data [, [bit address] [, size]]

Example DOUT 123,16,8

Outputs the data 123 as eight bits from bit 16 of the Terminal Block Unit or
Parallel I/O Unit.

DOUT Reference. . . . Section 4

81

Description The DOUT function outputs the data specified with the output data parameter to
the output port of the Terminal Block Unit or Parallel I/O Unit.

If both Terminal Block Units and Parallel I/O Units are connected, the DOUT
function does not differentiate between the two. The maximum number of output
bits becomes the total number of the output bits for all units.

Specify the data output start position (0 – (max. no. of output bits –1)) with the bit
address parameter. The default value is 0.

Specify the number of data bits to define the output data with the size parameter.
The default value is 16.

DSA Data Set Acknowledge
(Function)

Action Reads the status of the DSA signal.

Format DSA

Example A=DSA

Assigns the status of the Terminal Block Unit or Parallel I/O Unit DSA signal to
variable A.

Description The DSA function reads the status of the Terminal Block Unit or Parallel I/O Unit
DSA signal, and returns a value as follows:

1: DSA signal is ON.
0: DSA signal is OFF.

When multiple I/O units are used simultaneously, this function reads the DSA
signal status from the unit with the lowest slot address.

DSKF DiSK Function
(Function)

Action Determines the free space remaining in the memory card.

Format DSKF (drive)

Example J=DSKF(”C:”)

Determines the free space remaining in the memory card.

Description Determines the number of free bytes remaining in the disk specified by the drive
parameter.

The memory card interface is Drive C.

EDIT EDIT
(Command)

Action Selects the mode to edit lines of the program.

Format EDIT line number or .

Example EDIT 100

Displays line#1000 and selects the Edit mode.

Description Displays the line with the specified line number and selects the Edit mode.

In the Edit mode, the lines are edited with the ROLL-UP, ROLL-DOWN, and
other Keys. Use a period (.) to specify the current program line.

The current line is indicated by the pointer. The current line is the last line input
during program creation or the last line displayed with the LIST command.

EDIT Reference Section 4

82

ELLIPSE ELLIPSE
(Command)

Action Draws an ellipse in VRAM.

Format ELLIPSE X, Y, XR, YR, VRAM [, [page#], [drawing density or drawing mode]
[, lineart]]

Example ELLIPSE 128,255,90,35,2,,128,0

Draws a filled ellipse on Plane 7 of the window memory with center coordinates
(128,255), horizontal axis (9), and vertical axis (35).

Description The ELLIPSE command draws an ellipse around the center coordinates (X,Y)
with the specified horizontal axis (XR), and vertical axis (YR).

Specify the VRAM where the ellipse is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : 0 written to memory
!0: 1 written to memory

The drawing mode settings operate as follows:

OR: The current contents of the image memory ORed with 255 are written to
memory.

NOT: 0 is written to memory
XOR: The current contents of the image memory are inverted.
The default value for the drawing mode is OR.

Specify with the lineart parameter if the ellipse is an outline only or filled.

0: Filled ellipse
1: Ellipse outline only
The default value is 0 (filled).

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

END END
(Command)

Action Stops program execution.

Format END
Example IF A$=”FINISH” THEN END

Stops program execution if A$ contains the character string “FINISH”.

Description Stops program execution.

All files opened during program execution are closed when the END command is
executed. Even if no END command is executed, all files are closed and pro-
gram execution stops when the last line of the program has been executed.

END Reference Section 4

83

ENHANCE ENHANCE
(Command)

Action Creates LUT data for contrast modification from histogram array data.

Format ENHANCE array name, modification array name

Example ENHANCE A,E

Converts the histogram data in array A to contrast-modified histogram data and
stores it in array E.

Description The ENHANCE command creates the original contrast-modified histogram from
the histogram data obtained with the HISTGRAM command. This contrast-mo-
dified histogram is set into a LUT (look-up table) for binary conversion with the
SETLUT command. After the camera image is selected with the FILTERIN com-
mand and the image is input to the video memory with the VIDEOIN command,
the contrast of the image input from the camera is improved before the image is
input to the image memory.

Use the the array name parameter to specify the name of the array containing
the histogram obtained with the HISTGRAM command.

Specify the name of the array to store the converted data with the modification
array name parameter.

The array to store the modified data must contain at least 256 elements.

EOF End Of File
(Function)

Action Determines if the file is at the end of the file.

Format EOF (file#)

Example IF EOF(2) THEN CLOSE #2

Closes file #2 during I/O execution if the EOF (end of file) is detected in file #2.

Description The EOF function can be used for sequential access files and communication
ports. Sequential access files on the memory card must be opened in the INPUT
mode.

The EOF function returns –1 (true) if no readable data remains in the file or 0
(false) if readable data remains in the file.

Specify the number of the file opened with the OPEN command with the file#
parameter.

ERASE ERASE
(Command)

Action Deletes an array defined with the DIM command.

Format ERASE array name [, array name...]

Example ERASE X,Y1$

Deletes arrays X and Y1$.

Description The DIM command deletes the array with the name specified by the array name
parameter. The amount of memory equivalent to the size of the file is then
available to store variables.

After an array is deleted, another array with the same name can be created. This
allows the size of an array to be changed.

A Duplicate Definition error occurs if an array with the same name as an existing
array is created without first deleting the original array with the ERASE com-
mand.

ERASE Reference. . . . Section 4

84

ERL ERror Line
(Function)

Action Determines the line number where an error occurred.

Format ERL
Example L%=ERL

Assigns the line number where the error occurred to the variable L%.

Description The ERL function returns the line number where an error occurred.

The ERL function is normally used inside an error processing routine in
combination with program flow control statements. It is used for flow control in
error recovery processing and for recovery after the error is reset.

ERR ERRor code
(Function)

Action Determines the error code after an error occurs.

Format ERR
Example C%=ERR

Assigns the error code to the variable C%.

Description The ERR function returns the error code.

The ERR function is normally used inside an error processing routine in
combination with program flow control statements. It is used for flow control in
error recovery processing and for recovery after the error is reset.

ERRMSG ERRor MeSsaGe
(Command)

Action Defines the operation when an error occurs.

Format ERRMSG [message] [, [buzzer] [, error signal control]]

Example ERRMSG ,1

The buzzer sounds and an error message is displayed when error occurs.

Description The ERRMSG command defines the message format, buzzer alarm, and error
signal control method when an error occurs.

Set the message parameter to 0 to specify a Japanese error message or to 1 to
specify an English error message.

Set the buzzer parameter to 0 to stop buzzer operation when an error occurs.
Set the buzzer parameter to 1 to sound the buzzer when an error message is
displayed.

If the error signal control parameter is set to 0, the error signal does not turn on
when an error occurs. Set the error signal control parameter to 1, to turn the error
signal on when an error occurs.

The previous setting remains unchanged if the buzzer or error signal control
parameter is omitted.

ERROR ERROR
(Command)

Action Generates a pseudo-error.

Format ERROR (numeric expression)

Example ERROR 2

Generates error code 2: Syntax error.

ERROR Reference. . . Section 4

85

Description The ERROR command generates the error specified with the numeric expres-
sion. When an error is generated which corresponds to a predefined system
error code, program execution is interrupted and the appropriate error message
is displayed.

Specify the numeric expression as an integer between 0 and 255. This range of
integers includes the system error codes.

Refer to the Error Message Table on page 213 for details of the error codes.

ERROUT ERRor OUT
(Command)

Action Controls the error output.

Format ERROUT 0 or 1

Example ERROUT 1

Turns ON the power supply unit ERROR signal.

Description The ERROUT command controls the ON/OFF status of the power supply unit
ERROR signal. Set to 0 to turn the ERROR signal OFF or set to 1 to turn the
signal ON.

EVENTIN EVENT IN
(Command)

Action Sets the image input mode for input to the image memory due to event synchro-
nization.

Format EVENTIN [input mode [, [page#] [, input path]]]

Example EVENTIN 2

The image is input to page 0 of the image memory when the STEP signal is input.

Description The EVENTIN command sets the mode to input the image to the input memory
in synchronization with the STEP signal or MEASURE command.

Set the input method parameter to one of the following values to specify the
image input method.

0: No image input
1: Input image synchronized with MEASURE command execution.
2: Image input synchronized with the STEP signal.

The default value is 0.

Omit the page# or set to 0.

Inputting the image to the image memory in synchronization with the MEASURE
command allows comparatively high-speed measurements.
The image can be successfully input to the image memory with the strobe by
synchronizing the image input with the STEP signal in combination with the
FLASH command.

The input path parameter specifies the bus to input the image. The default value
is 0.

0: Image bus 1
1: Image bus 0

The EVENTIN command must be executed each time before executing the
MEASURE command or the STEP signal is input.

EVENTIN Reference. Section 4

86

The read timing for each input mode is shown below.

Input Mode 1:

Measure

1 field
(1/60 s)

Image input interval

Input Mode 2:

1 field
(1/60 s)

Image input interval

STEP signal

EXIT DEF/DO/FOR/SUB EXIT DEF/DO/FOR/SUB
(Command)

Action Exits a control block.

Format Format 1: EXIT DEF
Format 2: EXIT DO
Format 3: EXIT FOR
Format 4: EXIT SUB

Example FOR I=0 TO A
.
IF I>MAX THEN

PRINT ”ERROR”
EXIT FOR

END IF
.
.

NEXT

Operation leaves the FOR–NEXT control loop if the value of variable I exceeds
the value of the variable MAX.

Description Format 1: Exits a user function.

Format 2: Exits a DO-LOOP loop.

Format 3: Exits a FOR-NEXT loop.

Format 4: Exits a structural subroutine.

EXIT DEF/DO/FOR/SUB Reference Section 4

87

EXP EXPonential
(Function)

Action Determines the value of the natural number e raised to an exponential power.

Format EXP (numeric expression)

Example A!=EXP(2)

Assigns the value of e raised to the power of 2 (e2) to the variable A!.

Description The EXP function returns the value of e (≠ 2.71828) raised to the specified
power.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number.

The LOG function has the opposite action to the EXP function. The EXP function
can be used to create other mathematical functions, such as the hyperbolic sine
function (sinhX).

FIELD # FIELD
(Command)

Action Allocates the variable areas to the file buffer of the random access file.

Format FIELD file#, field length, AS character variable [, field length, AS character
variable...]

Example FIELD #1,30 AS NAME$,4 AS AGE$,6 AS SEX$

Allocate 30 bytes for the NAME$ variable, 4 bytes for the AGE$ variable, and 6
bytes for the SEX$ variable in the input buffer of the random access file opened
as #1.

30 4 6 216

256

NAME$ AGE$ SEX$

Units: bytes

Description To use a file buffer as the input buffer for a random access file, the areas to store
character data (variable areas) must be allocated in the file buffer.

Specify the file# as the number in which the file was opened with the OPEN
statement.

Specify the length allocated for the character variable with the field length
parameter as a positive integer between 1 and 255.

Multiple character variables can be allocated. However, the total of the field
lengths specified for all variables must not exceed 256 bytes. The total of the
field lengths specified with a FIELD# command must equal the length of one
record for random access file I/O.

The FIELD# command is used only to define the character variable names and
variable areas in the file buffer. The LSET and RSET commands are used to to
set data in the allocated variable areas. The GET# and PUT# statements are
used for data random access file I/O. It is not possible to assign data to the
character variables defined with the FIELD# command with any commands
except LSET and RSET. Multiple FIELD# commands can be executed to
allocate different character variables to a single file buffer.

FIELD # Reference. . Section 4

88

FILES FILES
(Command)

Action Displays the memory card file directory, showing the file names, sizes, and cre-
ation dates.

Format FILES (drive name)

Example FILES

Displays the file directory for the memory card (drive C).

Description The FILES command displays the file directory for the specified drive name,
showing the file names, sizes, and creation dates.

The default drive name is drive C.

The initial file creation date is 00/00/00 on 80/01/01 when the power supply is
turned on. Use the DATE$ function to apply the correct creation date to the file.

FILTDATA FILTer DATA
(Command)

Action Specifies the line filter factors.

Format FILTDATA data 0, data 1, ... , data 8 [, global factor]

Example FILTDATA –8,1,1,1,1,1,1,1,1,4

Sets the line filter to a negative Laplacian result divided by 4.

Description The FILTERDATA command sets the line filter factors. It is used with the FILTER
command to set the image filtering. Line filter must be selected with the FILTER
function to enable the filter specified with the FILTDATA command.

The factors are specified with the parameters data 0 to data 8. The positional
relationship of these pixels is shown in the diagram below.

Data 1 Data 2 Data 3

Data 4 Data 0 Data 5

Data 6 Data 7 Data 8

The nine parameters from data 0 to data 8 can be set to the values 0, +1, +2, +4.
However, data 0 can also be set to +8.

A filter result of 256 or higher is rounded to 255 while negative values are
rounded to 0. In cases where it is desirable to restrict filtering results to 255, the
filtering results can be divided by the global constant.

The global constant parameter can be set to 0, 1, 2, 4, 8, or 16. The output
becomes 0 if the global constant is set to 0. The default value is 1.

FILTER FILTER
(Command)

Action Sets the image filtering function and LUT function.

Format FILTER function [, [LUT function,] [, [bias] [, peripheral pixels]]]

Example FILTER 2,1

Sets the sharpened image and LUT function.

FILTER Reference. . . Section 4

89

Description The FILTER command sets the image filtering function for the camera image
and frame memory image.

Set the function parameter to a number corresponding to one of the following
filtering methods:

0: raw image
1: shading mask image
2: sharpened image
3: shading compensation image
4: sobel image
5: line filter image
6: (not used)
7: compound edge image

Set LUT function to 1 to enable the LUT function. The default value is 0.

The peripheral pixels parameter defines the output density (as 0 or 255) of the
2-pixel unstable border which arises due to filtering. The previous setting
remains unchanged if the set values is not 0 or 255 or if the parameter is omitted.

The specified bias value is added to the image density after filtering. Specify a
value between –128 and 127.

FILTERIN FILTER IN
(Command)

Action Selects the input path of the image to be displayed and measured.

Format FILTERIN path [, page#]

Example FILTERIN 1

The image memory contents are output to image bus#1.

Description The FILTERIN command selects the camera image or an image from image
memory as the image to be displayed and measured. This image is subjected to
the selected filtering function.

Set the path parameter to 0 to select the camera image or 1 to select the image
from the image memory. The image selected by the path parameter is output to
image bus#1 and is also subjected to filtering before being output to image
bus#0.

Omit the page# or set to 0.

FIND FIND
(Command)

Action Searches for a specified character string and displays the line containing the
character string.

Format Format 1: FIND search character string [, line# 1] [– [line# 2]] [, A]

Format 2: FIND

Example FIND ”WHILE”
Displays the first line in the text program containing “WHILE”.

FIND ”WHILE”, 100–200,A
Displays the all lines between line 100 and line 200 in the text program
containing “WHILE”.

FIND
Continue the previous find operation.

FIND Reference. Section 4

90

Description The FIND command searches for the specified search character string between
line#1 and line#2 and displays the line containing the character string. If more
than one line contains the specified search character string, the first line found is
displayed.

Input the FIND command with no parameters to continue a previous find
operation.

If the A option is specified, each line containing the specified search character
string is displayed.

FIX FIX
(Function)

Action Rounds down a value to an integer.

Format FIX (numeric expression)

Example A=FIX(–3.3)

Rounds down the value of the numeric expression –3.3 to an integer (–3) and
assigns it to the integer variable A.

Description The FIX function rounds down the specified numeric expression and returns an
integer.

The INT and CINT functions are similar to the FIX function. Like the FIX function
,the INT function also rounds down the specified value, but the INT function
never returns a value larger than the value specified with the numeric expres-
sion. The CINT function rounds off the decimal places of the specified numeric
expression (i.e., up or down to the nearest integer) and returns an integer.
Examples of the actions of the FIX, INT, and CINT function are shown in the table
below.

Expression Specified function Returned value

Positive numeric expression FIX (1.7)
INT (1.7)
CINT (1.7)

1
1
2

Negative numeric expression FIX (–1.7)
INT (–1.7)
CINT (–1.7)

–1
–2
–2

FLASH FLASH
(Command)

Action Flashes the strobe and simultaneously reads the image to the Camera I/F Unit
internal memory.

Format FLASH mode [, period]

Example FLASH 2

The strobe flash and image input to the Camera I/F Unit internal memory are
synchronized to the STEP input.

Description The FLASH command flashes the strobe and inputs the image to the Camera I/F
Unit internal memory.

Set the mode parameter to one of the following values:

0: Stop
1: Operation on FLASH command only
2: Operation synchronized to STEP input
3: Operation each specified period

FLASH Reference. . . Section 4

91

The period parameter setting is only valid when mode 3 (operation each
specified period) is selected. The period is specified as a number of fields
between 0 and 65535 fields. The default value is 2 fields (1 frame). Operation
stops if a period of 0 is specified.

FOR..TO..STEP–NEXT FOR..TO..STEP–NEXT
(Command)

Action Repeats the commands between the FOR and NEXT statements.

Format FOR numeric variable = initial value TO final value [STEP increment]
to

NEXT [numeric variable [, numeric variable ...]]

Example 100 FOR I=1 TO 10

200 NEXT I

Repeats the statements between line 100 and line 200 ten times.

Description The FOR–NEXT loop is formed by a series of statements starting with the FOR
statement and ending with the NEXT statement. The series of statements inside
the FOR–NEXT loop is executed the specified number of times. Normally, each
FOR statement has a corresponding NEXT statement.

The specified numeric variable counts the number of times the FOR–NEXT loop
is executed. Consequently, the same numeric variable name must be specified
for both the FOR and NEXT statements.

The units to calculate the loop execution can be specified with STEP and an
increment parameter. Both STEP and the increment parameter can be omitted.
The default value of the increment is +1. Each time the FOR–NEXT loop is
executed, the increment is added to the current value of the numeric variable
(starting from the initial value the first time the loop is executed) then assigned to
the numeric variable again.

FRE FREe memory
(Function)

Action Determines the amount of free space in each control area.

Format FRE (function)

Example PRINT FRE(2)

Prints the free memory size of each program area.

Description The FRE function determines the free memory area in bytes of the control area
specified with the function parameter.

Specify the function parameter as a value between 0 and 3, as follows:

0: Determines the free area in variable table region.
1: Determines the free area in character-string array region.
2: Determines the free area in program region.
3: Determines the total free area for functions 0 to 2.

GATE GATE
(Command)

Action Controls the GATE signal.

Format GATE 0 or 1

Example GATE 1

Turns on all GATE signals for the Terminal Block Units and Parallel I/O Units.

GATE Reference. Section 4

92

Description The GATE command controls the GATE signal ON/OFF status of the Terminal
Block Units and Parallel I/O Units.
Set to 0 to turn the signal OFF or to 1 to turn the signal ON.

When multiple units are connected, the GATE signals are controlled
simultaneously for all units.

GCOPY Gray COPY
(Command)

Action Copies the raw image in VRAM.

Format GCOPY VRAM1, [page# 1], VRAM2, [page# 2] [, [X1] [, [Y1] [, [X2] [, [Y2] [, [X] [,
[Y]]]]]]]

Example GCOPY 2,0,3,0

Copies the entire contents of the window memory to the image memory.

Description The GCOPY command copies the raw image in VRAM.

Specify the copy source and destination VRAMs (VRAM1 and VRAM2). A plane
VRAM cannot be specified. Use the numbers as follows:

2: Window memory
3: Image memory
4: Shading memory

Omit page# 1 and page# 2 or set to 0.

To limit the rectangular region to be copied, specify the top-left coordinates of the
rectangle as X1, Y1 and the bottom-right coordinates as X2, Y2. The default
values for X1, Y1 are 0, 0 and the default values for X2, Y2 are 511, 511. Specify
the top-left coordinates of the copy destination rectangle as X, Y. The default
values for X, Y are 0, 0.

The contents of planes write protected with the MASKBIT command remain
unchanged.

GCOPY2 Gray COPY
(Command)

Action Makes enlarged and reduced copies of raw images in VRAM.

Format GCOPY2 VRAM1, [page# 1], VRAM2, [page# 2] [, [XS1] [, [YS1] [, [XS2] [,
[YS2] [, [XD1] [, [YD1] [, [XD2] [, [YD2]]]]]]]]]

Example GCOPY2 3,,4,,200,200,300,300

Makes an enlarged copy of the image contained in the image memory rectangle
with coordinates (200, 200), (300, 300) to the entire shading memory.

Description The GCOPY2 command makes enlarged or reduced copies of the raw image in
VRAM.

Specify the copy source and destination VRAMs (VRAM1 and VRAM2). A plane
VRAM cannot be specified. Use the numbers as follows:

2: Window memory
3: Image memory
4: Shading memory

Omit page# 1 and page# 2 or set to 0.

Specify the top-left coordinates of the copy source rectangular region as XS1,
YS1 and the bottom-right coordinates as XS2, YS2. The default values for XS1,
YS1 are 0, 0 and the default values for XS2, YS2 are 511, 511.

GCOPY2 Reference. . Section 4

93

Specify the top-left coordinates of the copy destination rectangular region as
XD1, YD1 and the bottom-right coordinates as XD2, YD2. The default values for
XD1, YD1 are 0, 0 and the default values for XD2, YD2 are 511, 511.

The contents of planes write protected with the MASKBIT command remain
unchanged.

GET # GET #
(Command)

Action Reads data from a random file to the file buffer.

Format GET# file# [, numeric expression]

Example GET #1,8

Reads the #8 record from the random access file opened as file #1 to the file
buffer.

Description The GET# command reads data from the random access file specified with the
file# to the file buffer.

Specify the file# as the number in which the random access file was opened with
the OPEN statement. After using a random access file, it must be closed with the
CLOSE statement.

Specify the number of the record to be read with the numeric expression. If
omitted, the record after the record# used with the previous GET# or PUT# com-
mand is read.

The data in the file buffer is assigned to the character variables allocated to
variable areas with the FIELD# command. The character variables are then
transferred to the program.

GET@ GET@
(Command)

Action Reads image data from a VRAM to an array variable.

Format GET@ X1, Y1, X2, Y2, array name, VRAM [, [page#] [, plane#]]

Example GET@ 20,20,200,200,DATA1% 3,,2

Reads image data from the rectangular region of image memory, plane# 2,
bounded by the corner coordinates (20, 20), (200, 200) to the array variable
DATA1%.

Description The GET@ command reads image data from the rectangular region defined by
the corner coordinates (X1, Y1), (X2, Y2) to the array variable with the name
indicated by the array name.

Specify the VRAM where the data is stored with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

A frame type memory is specified as the VRAM along with a plane# to store the
data in the plane as binary data. The data is stored as raw image data if the
plane# is omitted.

If a plane memory is specified, the number of binary image pixels equals the
number of bits in a single data array and the number of bytes in the array to store
the data is given by the following equation:

((horiz. pixels + 7) ¥ 8) * vert. pixels + 4

GET@ Reference. . . . Section 4

94

If the array is D%, for example, the qualifier is calculated as follows:

Number bytes required ¥ 2 + 1

This applies when the qualifier minimum value is set to 0 with the OPTION BASE
command.

If a frame memory is specified, the number of raw image pixels equals the
number of bytes in a single data array and the number of bytes in the array to
store the data is given by the following equation:

horiz. pixels * vert. pixels + 4

If the array is D%, for example, the number of dimensions is calculated as
follows:

Number bytes required ¥ 2 + 1

This applies when the qualifier minimum value is set to 0 with the OPTION BASE
command.

The final 4 bytes in the equation above represents the 4 bytes at the start of array
where the array width and height are stored, as follows:

D% (0) = horizontal pixels (2 bytes)
D% (1) = vertical pixels (2 bytes)
D% (2) = 1st pixels
D% (3) = 2nd pixels

GETBLUT GET Binary LUT
(Command)

Action Reads the contents of the present binary-coded LUT value as an array variable.

Format GETBLUT binary image plane#, array name [, [qualifier] [, size]]

Example GETBLUT 4,A

Reads the binary LUT contents of binary image plane# 4 to array variable A.

Description The GETBLUT command reads the contents of the binary LUT specified with the
binary image plane# to the array specified with the array name.

The qualifier specifies the first element in the data array to store the data. The
default value is 0.

The difference between the set qualifier value and the maximum qualifier value
for the array must exceed the number of bytes set with the size parameter. When
the binary LUT data is written to the array variable, either 256 or 512 elements
are written from the start element specified by the qualifier. Other parts of the
array remain unchanged.

GETDLUT GET Display LUT
(Command)

Action Reads the current display LUT data to an array variable.

Format GETDLUT region, array name [, [qualifier]

Example GETDLUT 1,A

Reads the display LUT data from inside the window to array variable A.

Description The GETDLUT command reads the current display LUT data to the array
specified with the array name.

Individual display LUTs are available for inside and outside the window. Specify
which LUT is required with the region parameter. Set region to 0 to read the LUT
data from outside the window or 1 to read the data from inside the window.

The qualifier specifies the first element in the data array to store the LUT data.
The default value is 0.

GETDLUT Reference. Section 4

95

GETDLVL GET Display LeVeL
(Command)

Action Determines the display level of the image.

Format GETDLVL (image type)

Example GETDLVL(3)

Determines the displayed brightness of white in the binary image.

Description The GETDLVL function determines the displayed brightness of the image
specified by the image type parameter, as follows:

0: Character memory
1: Graphic memory

2: Mask image

3: Binary image, white
4: Binary image, black

5: Window memory increments
6: Paint/pattern matching window memory increments

GETLUT GET LUT
(Command)

Action Reads the current filtering LUT data to an array variable.

Format GETLUT array name [, [qualifier] [, size]]

Example GETLUT A

Reads the filtering LUT data to array variable A.

Description The GETLUT command reads the current filtering LUT data to the array
specified with the array name.

The qualifier specifies the first element in the data array to store the LUT data.
The default value is 0.

The size parameter specifies the number of data bytes to be stored. Set the size
to 0 to store 256 bytes or to any other value to store 512 bytes. The default value
is 0.

The difference between the set qualifier value and the maximum qualifier value
for the array must exceed the number of bytes set with the size parameter. When
the filtering LUT data is written to the array variable, either 256 or 512 elements
are written from the start element specified by the qualifier. Other parts of the
array remain unchanged.

GOSUB GOSUB
(Command)

Action Branches to a specified subroutine.

Format GOSUB line# or label

Example GOSUB *START

Branches to the subroutine starting from the line labelled *START.

Description The GOSUB command branches control to the subroutine starting with the
specified line number or label. Control returns to the GOSUB statement position
when the RETURN statement at the end of the subroutine is executed.

Specify the first line of the subroutine with the line# or label name as the GOSUB
command parameter.

GOSUB Reference. . . Section 4

96

When subroutines are nested, GOSUB and RETURN statements must always
be used in pairs.

GOTO GO TO
(Command)

Action Unconditionally jumps to a specified line.

Format FORMAT1: GO TO line# or label

FORMAT2: GOTO line# or label

Example GOTO *START

Program operation jumps to the line labelled *START.

Description The GOTO command unconditionally jumps control to the line with the specified
line number or label.

The action of the GOTO and GO TO statements is identical.

HELP HELP
(Command)

Action Displays help messages.

Format HELP [”command or function name”]

Example HELP ”A*”

Displays help messages for the commands and functions beginning with “A”.

Description The HELP command displays help messages for the commands and functions
specified with the command name parameter.

The wildcard characters (?, *) can be used in the command name.

A list of command and function names is displayed if the command name
parameter is omitted. No message is displayed if an unregistered command or
function name is specified with the command name.

HELP ON/OFF/STOP HELP key ON/OFF/STOP
(Command)

Action Disables, enables, or stops interrupts from the HELP Key.

Format HELP ON or OFF or STOP

Example HELP ON

Operation branches to an interrupt processing routine when the HELP Key is
pressed.

HELP ON/OFF/STOP Reference. . . Section 4

97

Description The HELP command controls branching to an interrupt processing routine when
the HELP Key is pressed.

HELP ON: The HELP ON statement enables the interrupt processing routine when the
HELP Key is pressed. When the HELP Key is pressed, operation branches to
the interrupt processing routine at the line# or label defined with the ON HELP
GOSUB statement.

HELP OFF: The HELP OFF statement disables the interrupt processing routine when the
HELP Key is pressed. When the HELP Key is pressed, operation does not
branch to an interrupt processing routine.

HELP STOP: The HELP STOP statement stops interrupt processing when the HELP Key is
pressed. When the HELP Key is pressed, operation does not immediately
branch to the interrupt processing routine. However, immediately branching is
enabled by the HELP ON statement, operation branches to the interrupt
processing routine at the line# or label defined with the ON HELP GOSUB
statement.

HEX$ HEX$
(Function)

Action Converts a numeric expression to a hexadecimal character string.

Format HEX$ (numeric expression)

Example A$=”&H”+HEX$(100)

Converts the decimal value 100 to a hexadecimal character string,
concatenates this character string with the character string “ &H”, and assigns
the result to the character variable A$. This equation is identical to A$ = ” &H64”.

Description The HEX$ function converts a decimal value to a hexadecimal character string.
It does not add the “ &H” prefix to indicate a hexadecimal character string.

Specify the numeric expression as a decimal numeric constant or numeric
variable between –2147483648 (–231) and 2147483647 (231–1). Any decimal
places in the specified numeric expression are rounded off to create an integer
which is converted to the hexadecimal character string.

The relationship between the decimal numeric expression and hexadecimal
character string is as follows:

Numeric expression (decimal) Hexadecimal character string

–2147483648 to –1 “80000000” to “FFFFFFFF”

0 to 2147483647 “0” to “7FFFFFFF”

To convert a hexadecimal character string back to numeric data, append the “
&H” prefix to indicate a hexadecimal character string, then convert the character
string with the VAL function.

HISTGRAM HISToGRAM
(Command)

Action Reads the density histogram from the image memory.

Format HISTGRAM [page#], X1, Y1, X2, Y2, array name [, qualifier]

Example HISTGRAM ,0,0,100,100,H

Stores the density histogram contained in the image memory rectangle with
corner coordinates (0, 0), (100, 100) to array name H.

Description The HISTGRAM command reads the density histogram from the image in the
image memory.

Omit the page# or set to 0.

HISTGRAM Reference. Section 4

98

The density histogram is read from the rectangular region with the specified
corner coordinates X1, Y1 and X2, Y2.

Specify the name of the array to store the density histogram with the array name
parameter.

The qualifier specifies the first element in the data array to store the density his-
togram. The default value is 0.

The array must have at least 256 elements between the specified qualifier value
and the maximum qualifier value.

IF..GOTO–ELSE IF..GOTO–ELSE
(Command)

Action Controls the program flow with a specified condition.

Format IF conditional expression GOTO line # or label ELSE statement or line # or
label

Example IF A=1 GOTO 100 ELSE 200

Branches to line 100 if variable A equals 1 and branches to line 200 if variable A
is not equal to 1.

Description The IF ... GOTO–ELSE command control the program flow with the specified
conditional expression.

If the conditional expression is true (not 0), program operation jumps to the line#
or label specified after GOTO. The statement, line# or label specified after ELSE
is ignored.

 If the conditional expression is false (0), program operation jumps to the line# or
label specified after ELSE or executes the statement specified after ELSE. The
line# or label specified after GOTO is ignored.

The ELSE statement can be omitted.

IF..THEN–ELSE IF..THEN–ELSE
(Command)

Action Controls the program flow with a specified condition.

Format IF conditional expression THEN statement or line # or label ELSE state-
ment or line # or label

Example IF A$=”y”THEN GOSUB *START ELSE B=B+1

Branches to the subroutine labelled *START if variable A$ equals “ y”, otherwise
increments variable B by 1.

Description The IF ... THEN–ELSE command control the program flow with the specified
conditional expression.

If the conditional expression is true (not 0), program operation jumps to the line#
or label specified after THEN or executes the statement specified after THEN.
The statement, line# or label specified after ELSE is ignored.

 If the conditional expression is false (0), program operation jumps to the line# or
label specified after ELSE or executes the statement specified after ELSE. The
statement, line# or label specified after THEN is ignored.

The ELSE statement can be omitted.

IF..THEN–ELSE Reference. . Section 4

99

IF..THEN–ELSEIF–ELSE–END IF
(Command)

Action Evaluates specified conditions.

Format IF conditional expression THEN
Statement in THEN block

ELSEIF conditional expression THEN
Statement in ELSE IF block

[ELSE
Statement in ELSE block]

END IF

Example IF ERR=0 THEN
PRINT ”NORMAL”

ELSEIF ERR=2 THEN
PRINT ”SYNTAX ERROR”

ELSEIF ERR=13 THEN
PRINT ”TYPE MISMATCH”

ELSE
PRINT ”OTHER ERROR”

END IF

Defines different actions when the variable ERR equals 0, 2, 13, or some other
value.

Description The IF ... THEN–ELSEIF–ELSE–END IF commands evaluate specified condi-
tional expressions.

Executes the subsequent Statement in THEN block if the specified conditional
expression is true (not 0). Jumps to the next ELSE IF, ELSE, or END statement if
the conditional expression is false (0).

Multiple ELSE IF statements may be used or they may be omitted.

The ELSE statement may be omitted.

The END IF statement is required. It cannot be omitted.

The GOTO command must not be used to jump into or out of a IF ... THEN–EL-
SEIF–ELSE–END IF statement block.

IMGLOAD IMaGe LOAD
(Command)

Action Loads image data to VRAM.

Format IMGLOAD file name, X, Y, VRAM, [, [page#] [, plane#]]

Example IMGLOAD ”IMG1”,0,0,2,,5

Writes the file IMG1 from the memory card to the rectangular region with top-left
coordinates (0, 0) in window memory plane 5.

Description The IMGLOAD command loads image data saved with the IMGSAVE command
to VRAM.

Specify the image data with the file name parameter.

The data is saved to rectangular region. Specify the top-left coordinates of this
rectangular region with the X, Y parameters.

IMGLOAD Reference. Section 4

100

Specify the VRAM where the data is loaded with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

Specify the plane# when loading binary image data to a frame VRAM. An error
occurs if an attempt is made to write raw image data to a plane VRAM. If image
data is written to a frame VRAM, it cannot be loaded to planes write protected
with the MASKBIT command.

IMGSAVE IMaGe SAVE
(Command)

Action Saves image data from VRAM.

Format IMGSAVE file name X1, Y1, X2, Y2, VRAM, [, [page#] [, plane#]] [, compres-
sion function]]]

Example IMGSAVE ”IMG1”,10,10,100,100,2,,3

Saves the rectangular region with corner coordinates (10, 10), (100, 100) from
the window memory plane 3 to the file IMG1 in the memory card with no
compression.

Description The IMGSAVE command saves image data from VRAM.

The contents of the image memory are saved to a file in the memory card with
the specified file name. Only the image inside the rectangular region with corner
coordinates (X1, Y1), (X2, Y2) is saved.

Specify the VRAM from which the data is saved with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

Specify the plane# when saving binary image data or window data from a single
plane of a frame VRAM. The data is treated as raw image data if the plane# is
omitted.

Specify the compression function, as follows:

0: When saving binary image data (No compression)
1: When saving binary data (Compression using run-length method)
2: When saving shading data and raw image data (High compression)

The default value is 0. When the value 2 is specified, the rectangular region must
be set to (0,0), (511,511).

INKEY$ INput KEY$
(Function)

Action Determines the character input from the keyboard.

Format INKEY$

Example A$=INKEY$

Assigns the key character of the key pressed on the keyboard to variable A$.

INKEY$ Reference. . . Section 4

101

Description The INKEY$ function returns the key character of the key pressed when the
function is executed. The function returns a null string (” ”) if no key is pressed
(that is, the keyboard buffer is empty). Refer to the Note below.

Data input with the INKEY$ function is not displayed on the screen. Unlike other
input commands, operation does not wait for a key to be pressed after the
function is executed.

Note Information on the pressed keys is stored in the keyboard buffer even if no
key input statement is executed. If data remains in the keyboard buffer when
the INKEY$ function is executed, the function returns the first key character
from the keyboard buffer, regardless of the key pressed at that time.

INPUT INPUT
(Command)

Action Assigns data input from the keyboard to a variable.

Format INPUT [prompt character string{ , or ;}] variable [, variable...]

Example INPUT ”NAME”;B$

Displays “NAME” on the screen and waits for keyboard input of the character
data to be assigned to the character variable B$.

Description Operation waits for data input from the keyboard when the INPUT command is
executed. Enter data delimited by commas (,) for the specified number of
variables and press the Return Key to assign the data to the variables.

Specify a character string for the prompt character string. This character string is
displayed to prompt for input of the required data.

The prompt character string must be separated from the subsequent variable by
a comma (,) or semicolon (;). The specified prompt character string only is
displayed if a comma is used. The specified prompt character string followed by
a question mark (?) and a single space is displayed if a semicolon is used. If no
specified prompt character string is specified, a question mark (?) and a single
space are displayed.

Multiple variables can be specified delimited by commas (,). The variables can
be either numeric or character variables.

If the Return Key is pressed without entering values, zero (0) is assigned to
numeric variables and a null string (” ”) is assigned to character variables.

INPUT# INPUT#
(Command)

Action Reads data from a sequential access file and assigns it to variables.

Format INPUT # file#, variable [, variable...]

Example INPUT #1,A$,B,C

Reads three data items (character, numeric, numeric) sequentially from file #1
and assigns the data to variable A$ (character variable), B (numeric variable),
and C (numeric variable).

Description Specify the file# as the number in which the random access file was opened with
the OPEN statement.

The variables can be specified either as numeric or character variables. The
specified variable format must match the corresponding data format.

The data is read from the file as numeric or character variables, complying with
the rules governing these data types. Unlike the INPUT command, the INPUT#
command displays no prompt message or question mark (?).

INPUT# Reference. . . Section 4

102

Numeric Variables: Leading spaces are ignored and the data is read in from the first non-blank char-
acter. The data up to the next blank, comma (,), or linefeed character (&HA) is
assigned to the numeric variable.

Character Variables:Leading spaces are ignored and the data is read in from the first non-blank char-
acter. The data up to the next blank, comma (,), or linefeed character (&HA) is
assigned to the character variable.

If the first character is a double-quotation mark (”), subsequent data is
considered to be contained in double-quotation marks (”) and all characters and
blanks up to the next double-quotation mark (”) are assigned to the character
variable. Therefore, a comma (,) or linefeed character (&HA) must be enclosed
in double-quotation marks (”) to be assigned to a variable.

INPUT$ INPUT$
(Function)

Action Reads a specified length of data from a sequential access file, the RS-232C port,
or the keyboard.

Format INPUT$ (character string length [, file#])

Example A$=INPUT$(5,#3)

Reads 5 characters from file #3 and assigns them to variable A$.

Description Specify the file# to read the data from with the file# parameter.

Data is read from the keyboard if the file# parameter is omitted. Unlike data input
with the INPUT or LINE INPUT command, data input from the keyboard using
the INPUT$ function is not displayed on the screen.

Specify the character string length as a positive integer value. The program
operation waits for input of the specified number of characters.

If the length of the data input from the RS-232C port exceeds the number of
characters specified with the character string length, the remaining data is read
to the next INPUT$ function.

INPUT WAIT INPUT WAIT
(Command)

Action Inputs data from the keyboard with a time limitation.

Format INPUT WAIT wait time, [prompt character string{ , or ;}] variable [, vari-
able..]

Example INPUT WAIT 150,”ANSWER”;AN$

Displays the input prompt message “ANSWER” on the screen and waits 15
seconds for keyboard input of the character data to be assigned to the character
variable A$.

Description Operation waits for the specified wait time for data input from the keyboard when
the INPUT WAIT command is executed. Enter data delimited by commas (,) for
the specified number of variables and press the Return Key within the specified
wait time to assign the data to the variables.

The INPUT WAIT command is identical to the INPUT command, except for the
time limit. If the Return Key is pressed without entering values for the variables,
zero (0) is assigned to numeric variables and a null string (” ”) is assigned to
character variables. If the time specified by wait time passes, the variables will
not change.

Specify the wait time in units of 0.1 second.

INPUT WAIT Reference. . . . Section 4

103

INSTR IN STRing
(Function)

Action Determines the position of the specified characters in the character string

Format INSTR ([start position,] character string 1, character string 2)

Example X=INSTR(,A$,”XYZ”)

Determines the position of character string XYZ from the start of the character
string A$ and assigns the position as a number of bytes to variable X.

Description The INSTR function finds a specified character string 2 in a character string 1 of
one-byte characters and returns the position of character string 2 in bytes from
the start of character string 1.

The function returns the value 0 if the specified character string 2 does not exist
in character string 1. The INSTR function still returns the number of 1-byte
characters if it is used to find a character string in a string of 2-byte characters. In
this case, use the KINSTR function instead.

Specify a value with the start position parameter to set the the position to start
searching character string 1. Specify the value between 1 and the number of
characters in character string 1. If omitted, searching starts from the beginning
of the character string. The function returns the value 0 if the specified start posi-
tion is larger than the number of characters in character string 1.

Specify a character constant or a character variable for character string 1, the
character string to search. The function returns the value 0 if the specified char-
acter string 1 is a null string (” ”).

Specify a character constant or a character variable for character string 2, the
character string to be searched for. The function returns the specified start posi-
tion value if character string 2 is specified as a null string (” ”).

INT INTeger
(Function)

Action Rounds down a value to an integer.

Format INT (numeric expression)

Example A=INT(3.3)

Rounds down the value of the numeric expression 3.3 to an integer 3 and
assigns it to the integer variable A.

Description The INT function rounds down the specified numeric expression and returns an
integer not exceeding the value specified with the numeric expression.

The FIX and CINT functions are similar to the INT function. However, the FIX
function simply cuts off (rounds down) the decimal places from the specified val-
ue. The CINT function rounds off the decimal places of the specified numeric
expression (i.e., up or down to the nearest integer) and returns an integer.
Examples of the actions of the FIX, INT, and CINT function are shown in the table
below.

Expression Specified function Returned value

Positive numeric expression FIX (1.7)
INT (1.7)
CINT (1.7)

1
1
2

Negative numeric expression FIX (–1.7)
INT (–1.7)
CINT (–1.7)

–1
–2
–2

INT Reference. Section 4

104

INTR ON/OFF/STOP INTeRrupt ON/OFF/STOP
(Command)

Action Disables, enables, or stops interrupts with the STEP signal.

Format INTR ON or OFF or STOP

Example INTR ON

Enables STEP interrupts.

Description The INTR command control execution of the interrupt subroutine defined with
the ON INTR GOSUB command when a STEP input is generated from a
Terminal Block Unit or Parallel I/O Unit. The rising edge of the STEP input signal
is detected.

The INTR ON statement enables the STEP interrupt processing. When the
STEP signal is input, the interrupt routine is executed immediately.

The INTR OFF statement disables the STEP interrupt processing. The STEP
input is ignored.

The INTR STOP statement stops STEP interrupt processing. An input STEP
signal is stored in memory, and when STEP interrupt processing is enabled
again with the INTR ON command, operation immediately branches to the
STEP interrupt processing routine. Operation jumps to the STEP interrupt
processing routine only once, regardless of the number of times the STEP signal
was input.

IPL Initial Program Loading
(Command)

Action Sets the OVL boot-up mode.

Format IPL [[0 or 1 or file name], [numeric value 1], [numeric value 2], [numeric value
3], [numeric value 4], [numeric value 5]]

Example IPL 1
Automatic boot-up of the program in the text region when the power is turned on.

IPL ”C:FILE”
Loads and executes “C:FILE” when the power is turned on.

IPL
Displays the current OVL boot-up mode.

Description Set the IPL command initial parameter to 1 to automatically load and boot-up the
program in the text region. Set the parameter to 0 to disable automatic boot-up.
Set a file name as the parameter to load and execute a saved file.

The numeric value 1 parameter specifies the number of files which can be open
simultaneously. Set a value between 1 and 11.

The numeric value 2 parameter specifies the size of the array variable or
character variable region in Kbytes. Set a value between 1 and 62 Kbyte.

The numeric value 3 parameter specifies the size of the user stack region in
Kbytes. Set a value between 1 and 2 Kbyte.

The numeric value 4 parameter specifies the size of the compile region in
Kbytes. Set a value between 2 and 8 Kbyte.

The numeric value 5 parameter specifies the number of lines displayed on the
screen. Set the value to 20 or 25.

If all parameters are omitted, the current OVL boot-up mode status is displayed.

IPL Reference. Section 4

105

JIS$ JIS$
(Function)

Action Determines Shift JIS code for a 2-byte character.

Format JIS$ (character string)

Example J$=JIS$ (”ABC”)

Assigns the Shift JIS code (8260) corresponding to the first character of the
character string ”ABC”.

Description The JIS$ function returns the hexadecimal character for the first 2-byte
character in the specified character string.

If the specified character string contains 1-byte characters, the code is returned
for the first and second bytes of the string. An error occurs if a null string (” ”) or a
string containing one byte is specified.

The KNJ$ function has the opposite function to the JIS$ function. The KNJ$
function returns the 2-byte character corresponding to the specified 4-digit
hexadecimal Shift JIS code. The F300 uses the Shift JIS codes.

KACNV$ Kanji Ank CoNVert$
(Function)

Action Converts 2-byte characters in a character string to 1-byte characters.

Format KACNV$ (character string)

Example C$=KACNV$(”OMRON ”)

Converts the 2-byte characters “OMRON” in the character string ”OMRON ”
to the 1-byte characters ” ” and assigns the entire character string to
variable C$.

Description The KACNV$ function converts an alphabetic, numeric, or kana 2-byte
character to a 1-byte character of identical meaning. The KACNV$ function
returns a character string containing only 1-byte characters.

Specify the character string with a character constant or character variable as a
character string containing alphabetic, numeric, and kana characters defined
with both 1-byte and 2-byte character codes.

An error occurs if the character string contains a Kanji character or a 2-byte
character for which no 1-byte character is defined.

The AKCNV$ function has the opposite action to the KACNV$ function. The
AKCNV$ function converts 1-byte alphabetic, numeric, and kana characters in a
character string to equivalent 2-byte characters.

KEXT$ Kanji EXTract $
(Function)

Action Extracts either 1-byte or 2-byte characters from the character string.

Format KEXT$ (character string, function)

Example K$=KEXT$ (”OMRON ”)

Assigns only the 1-byte characters to variable K$. In this case, K$ contains the
string ” ”.

Description The KEXT$ function extracts either the 1-byte or 2-byte characters from a
character string containing by character types.

Specify the character string from which the characters are selected as a
character constant or a character variable.

KEXT$ Reference. . . . Section 4

106

Specify the function parameter as either 0 or 1. The meanings of these settings
are described in the table.

Function Description

0 Extract the 1-byte characters

1 Extract the 2-byte characters

The KEXT$ function returns a null string (” ”) if the type of character specified
with the function parameter does not exist in the character string.

KEY KEY
(Command)

Action Assigns any character string to the function keys.

Format KEY [key#, character expression]

Example KEY 1,”TOTAL”

Sets the character string “TOTAL” to function key 1 and displays this character
string on in the input guide.

Description The KEY command sets the display for the function key (F1 to F10) with the
specified key# using a character string or control code.

Specify the key# parameter as a value between 1 and 10. This number
corresponds to one of the functions keys (F1 to F10).

Specify the character expression with up to 15 1-byte characters and control
codes (CHR$ (1) to CHR$(31) and CHR$(127)).

The control codes cannot be input from the keyboard. Specify the codes using
the CHR$ function with character codes linked by “+” signs. Each control code
occupies one byte. The input guide displays the first five standard-sized charac-
ters.

If the key# and character expression parameters are omitted, the settings revert
to the settings when the OVL was booted up.

KEY LIST KEY LIST
(Command)

Action Displays the function key settings on the screen.

Format KEY LIST
Example KEY LIST

Displays the settings of all the function keys on the screen.

Description The KEY LIST command displays the present settings of the ten function keys.

KEY ON/OFF/STOP KEY ON/OFF/STOP
(Command)

Action Disables, enables, or stops interrupts from the function keys.

Format KEY [(key#)] ON or OFF or STOP
Example KEY(10)ON

Operation branches to an interrupt processing routine when the function key#
10 (F10) is pressed.

Description The KEY command controls branching to an interrupt processing routine when a
function key is pressed.

Specify the key# parameter as a value between 1 and 10 corresponding to a
function key number. The KEY ON/OFF/STOP command applies to all keys if
the key# is not specified.

KEY ON/OFF/STOP Reference. Section 4

107

KEY ON: The KEY ON statement enables the interrupt processing routine when the
function key is pressed. When the function key is pressed, operation branches to
the interrupt processing routine at the line# or label defined with the ON KEY
GOSUB statement.

KEY OFF: The KEY OFF statement disables the interrupt processing routine when the
function key is pressed. When the function key is pressed, operation does not
branch to an interrupt processing routine.

KEY STOP: The KEY STOP statement stops interrupt processing when the function key is
pressed. When the function key is pressed, operation does not immediately
branch to the interrupt processing routine but the pressed status is stored in
memory. Immediately branching is enabled by the KEY ON statement, operation
branches to the interrupt processing routine at the line# or label defined with the
ON KEY GOSUB statement.

Note The interrupt subroutine must be defined with the ON KEY GOSUB
statement before a KEY ON/OFF/STOP command is executed.

KEYIN KEYIN
(Function)

Action Reads the input status of the console keys.

Format KEYIN (input mode)

Example A=KEYIN(1)

Waits for a key input from the console and assigns the input status to variable A.

Description Returns the input status of the console keys.

If the input mode parameter is set to 0, the function returns 0 is no key is pressed
at the time the function is executed. If the input mode parameter is set to 1,
operation waits until a key is pressed.

The function returns a value between 0 and 255. Each bit of the binary
representation of the returned value corresponds to a pressed key, as follows:

Bit 0: j Bit 4: ENT
Bit 1: Q Bit 5: ESC
Bit 2: A Bit 6: HELP
Bit 3: i Bit 7: SHIFT (see note)

Note The status of the SHIFT Key is returned only when it is pressed
simultaneously with another key.

KILL KILL
(Command)

Action Deletes the file with the specified filename from the memory card.

Format KILL filename

Example KILL ”BASIC.DAT”

Delete the file BASIC.DAT from the memory card.

Description Specify the name of a file existing in the memory card as a character string with
the filename parameter. An error occurs if the specified filename does not exist
in the memory card.

The filename parameter can specify any program or data file in the memory
card. However, an error occurs if the KILL command is executed on a write-pro-
tected file.

KILL Reference Section 4

108

An error occurs if the KILL command is executed on a file opened with the OPEN
statement. Close the file with the CLOSE statement before deleting it with the
KILL command. A file cannot be deleted with the KILL command if the file
attribute is set to write-protected with the SET command. Use the SET com-
mand to remove the write protection before deleting the file with the KILL com-
mand.

KINPUT Kanji INPUT
(Command)

Action Automatically sets the Japanese input mode and reads data from the keyboard.

Format KINPUT character variable

Example KINPUT KANJI$

Waits for keyboard input of the Japanese character data to assign to the
character variable KANJI$.

Description The Japanese input mode is selected automatically when the KINPUT com-
mand is executed and the system waits for input of a Japanese (2-byte)
character from the keyboard. After the data is input, it is assigned to the charac-
ter variable when the Return Key is pressed.

KINSTR Kanji IN STRing
(Function)

Action Determines the position of the specified characters in the character string

Format KINSTR ([start position,] character string 1, character string 2)

Example K=KINSTR (2, A$, JAPAN)

Searches for the character string “JAPAN” from the second character of the
character string A$ and assigns the position from the start of the array as a
number of bytes to variable K.

Description The KINSTR function finds a specified character string 2 in a character string 1
and returns the position of character string 2 from the start of character string 1.
1-byte and 2-byte characters are each counted as a single character.

Specify a value with the start position parameter to set the the position to start
searching character string 1. Specify the value between 1 and the number of
characters in character string 1. If omitted, searching starts from the beginning
of the character string. The function returns the value 0 if the specified start posi-
tion is larger than the number of characters in character string 1.

Specify a character constant or a character variable for character string 1, the
character string to search. The function returns the value 0 if the specified char-
acter string 1 is a null string (” ”).

Specify a character constant or a character variable for character string 2, the
character string to be searched for. The function returns the specified start posi-
tion value if character string 2 is specified as a null string (” ”).

The function returns the value 0 if the specified character string 2 does not exist
in character string 1.

KLEN Kanji LENgth
(Function)

Action Determines the number of characters in a character string including 2-byte
characters.

Format KLEN (character string [, function])

Example L=KLEN (”BASIC”)

Assigns the length of the character string “BASIC” (5) to variable L.

KLEN Reference. Section 4

109

Description The KLEN function returns the length of a specified character string. 1-byte and
2-byte characters are each counted as a single character.

Specify a character constant or a character variable for character string 1, the
character string to search. The character string can contain both 1-byte and
2-byte characters.

Specify the function parameter as an integer. The default value is 0. The
meaning of the function parameter is shown below.

Function Description

0 Determines the total number of 1-byte and 2-byte characters in the
character string.

1 Determines the total number of 1-byte characters only.

2 Determines the total number of 2-byte characters only.

3 Determines the total number of wide characters only.

KMID$ Kanji MIDdle $
(Function)

Action Extracts part of a character string containing 2-byte Japanese characters.

Format KMID$ (character variable, start position [, number of characters])

Example KA$=KMID$(K$,1,10)

Extracts 10 characters from the first character of the character string K$ and
assigns them to the character string KA$.

Description Extracts a specified length of character string from a character string containing
2-byte Japanese characters.

Specify a character constant or a character variable for character variable to
search. Do not specify a null string (” ”).

Specify the number of characters to be extracted with the number of characters
parameter. The function returns a null string (” ”) if the specified number of
characters is negative or exceeds the actual number of characters between the
start position and the right end of the character variable. Set the start position to
1 to select a string from the start of the specified character variable.

Specify the number of characters to be extracted with the number of characters
parameter. All characters to the right of the start position are replaced if the num-
ber of characters is omitted or if the number of characters exceeds the actual
number of characters between the start position and the right end of the charac-
ter variable.

KNJ$ KaNJi$
(Function)

Action Determines the character corresponding to a Shift JIS character code.

Format KNJ$ (character string)

Example K$=KNJ$(”8260”)

Assigns 2-byte character “A” corresponding to the Shift JIS code 8260 to
variable K$.

Description The KNJ$ function returns the 2-byte character corresponding to the specified
4-digit hexadecimal Shift JIS code.

Specify a Shift JIS code with the character string.

KNJ$ Reference. Section 4

110

The JIS$ function has the opposite function to the KNJ$ function. The JIS$
function returns a 4-digit hexadecimal Shift JIS code corresponding to the first
2-byte character in a character string.

KPLOAD Kanji Pattern LOAD
(Command)

Action Registers user-defined character patterns in the F300.

Format KPLOAD character code, integer array name

Example KPLOAD &HEC40,CHRPTN%

Register the Kanji pattern defined in array CHRPTN% as the Kanji code
&HEC40.

Description The KPLOAD command registers user-defined character patterns in the F300.

Specify the code to be registered with the character code parameter. Use the
codes between &HF8 and &HFF for standard characters and the codes
between &HEB9F and &HEBFC or between &HEC40 and &HEC61 for wide
characters. An error occurs if the character code is specified outside these
ranges.

Specify the array variable containing the character pattern with the integer array
name. The array variable must previously be declared with the DIM command as
a one-dimensional array with 16 elements.

Store the dot image of the character pattern in elements 1 to 16 of the array
variable in the format shown below:

Array element 1 = &H1281
Array element 2 = &H2242
.
.
.
Array element 16 = &H0

KPOS Kanji POSition
(Function)

Action Determines the number of bytes to the specified character position in the
character string which includes 2-byte Japanese characters.

Format KPOS (character string, character position)

Example K = KPOS (”ABC ”, 5)

Assigns the number of bytes (8) up to the 5th character position in the character
string ”ABC ” to variable K.

Description The specified character string may contain a mixture of 1-byte and 2-byte char-
acters. The KPOS function returns the number of bytes up to the specified char-
acter position in the character string.

Specify the position of a character in the character string with the character posi-
tion parameter.

The function returns 0 if the number of characters in the character string is less
than the character position.

KPOS Reference. Section 4

111

KTYPE Kanji TYPE
(Function)

Action Determines the type of character at a specified position in the character string.

Format KTYPE (character string, character position)

Example T=KTYPE(K$,3)

Determines the type of the 3rd character in the character string and assigns the
corresponding number to variable T.

Description The KTYPE function determines the type of character at a specified character
position in the character-string as a value between 0 and 2. The meanings of the
returned numbers is shown below.

Returned value Description

0 1-byte alphanumeric standard-sized character

1 2-byte double-sized character

2 2-byte standard-sized character

Specify the character string as a character constant or a character variable
containing a mixture of 1-byte and 2-byte characters.

Specify the position of the required character from the start of the character
string as an integer with the character position parameter. Specify the character
position between 0 and the length of the character string. Count both 1-byte and
2-byte characters as one character.

The KLEN function can be used to determine the number of characters in a
character string.

LABEL LABELing
(Command)

Action Carries out labelling based on the detailed runlength data measured with the
MEASURE command.

Format LABEL [link evaluation constant]

Example LABEL

Labels using eight-neighbor evaluation of the linked status.

Description The LABEL command carries out labelling based on the detailed runlength data
measured with the MEASURE command. Labelling data is read with the LDATA
function or LPOINT function.

The RMODE command and MEASURE command must be executed each time
before the LABEL command is executed.

The specified link evaluation constant specifies the link evaluation method, as
follows:

0: eight-neighbor evaluation
1: four-neighbor evaluation
The default value is 0.

The following commands and functions are related to the labelling carried out
with the LABEL command:

LPUTIMG LSORT
LDATA LPOINT

LABEL Reference. . . . Section 4

112

LBOUND Lower BOUNDary
(Function)

Action Determines the lower boundary of an array dimension qualifier.

Format LBOUND (array name [, number of dimensions])

Example I=LBOUND(A,1)

Assigns the lower limit of the qualifier of the 1-dimensional array A to variable I.

Description The LBOUND function returns the lower boundary of an array dimension
qualifier.

Specify the name of the array for which the qualifier is to be determined with the
array name parameter.

Specify the number of dimensions of the array with the number of dimensions
parameter. The default value is 1.

The returned value is either 0 or 1, as set when the OPTION BASE command
was executed.

LCASE$ Lower CASE$
(Function)

Action Converts uppercase letters in the character string to-lower case letters.

Format LCASE$ (character string)

Example INPUT ”string:”,A$
IF LCASE$(A$)=”end” THEN END

If the character string input as A$ is “END”, the character string is converted to
“end.”

Description The LCASE$ function converts uppercase letters in the character string to-lower
case letters. Existing lowercase letters remain unchanged.

LDATA Label DATA
(Function)

Action Measures data for the labelled image obtained with the LABEL command.

Format LDATA (label#, item)

Example X=LDATA(2,1)

Assigns the value of the center of gravity in the X direction of the image labelled
#2 to variable X.

Description The LDATA function measures data from an image labelled with the LABEL
command.

Specify the number of the labelled image as the label#. The label numbers
(label#) start from 1.

LDATA Reference. . . . Section 4

113

Specify the item with one of the following numbers:

0: Area
1: Center of gravity X
2: Center of gravity Y
3: Main axis angle
4: Peripheral length
5: Area after filling
6: Number of holes
7: X coordinate of top-left corner of external box
8: Y coordinate of top-left corner of external box
9: X coordinate of bottom-right corner of external box
10: Y coordinate of bottom-right corner of external box

The LABEL command must be executed before the LDATA function is used.

LEFT$ LEFT$
(Function)

Action Extracts a character string with the specified length from the left end of the
specified character string.

Format LEFT$ (character string, character string length)

Example B$=LEFT$(A$,3)

Extracts 3 characters from the left end of character string A$ and assigns them to
variable B$.

Description Extracts a character string of any length from the start of the specified character
string.

The character string can be specified as a character constant or character vari-
able. A null string (” ”) cannot be specified.

Specify the length of the extracted character string in bytes with the character
string length parameter as a value between 1 and the length of the character
string. A null string is returned if 0 is specified for the character string length. The
entire specified character string is returned if the character string length is
greater than the length of the specified character string.

LEN LENgth
(Function)

Action Determines the number of bytes in a character string.

Format LEN (character string)

Example L=LEN(”F300 OVL”)

Assigns the length of the character string “F300 OVL” (8 bytes) to variable L.

Description The LEN function returns the length of a specified character string in bytes.

Use the KLEN function to return the length of a string containing 2-byte
characters.

LET LET
(Command)

Action Assigns the expression at the right to the variable at the left.

Format [LET] variable = expression

LET Reference Section 4

114

Example LET A=(B+C)/2 or A=(B+C)/2

Assigns the sum of the numeric variables B and C divided by 2 to variable A.

Description Assigns the expression at the right to the variable at the left. It is not possible to
specify a variable at the right or an expression at the left.

The function name LET can be omitted. LET is normally omitted in a program.

The variable can be a numeric variable or a character variable. Similarly, the
expression can be a numeric expression or a character expression. However,
the types must match on the left and right. If a numeric variable is specified at the
left, a numeric expression must be specified to the right. Similarly, if a character
variable is specified at the left, a character expression must be specified to the
right.

LEVEL LEVEL
(Command)

Action Sets the binary level for each binary image plane.

Format LEVEL binary image plane#, lower limit, upper limit [, mode]

Example LEVEL 3,100,200

Set the binary level limits for the binary image plane 3 to 100 and 200,
respectively.

Description The LEVEL command sets the binary level for each binary image plane.

Specify the binary image plane for which the level is set with the binary image
plane# parameter. Set the binary image plane# to –1 to set all binary image
planes to the same binary level.

The gradations of the raw input image are converted to a binary image with all
values between the specified lower limit and upper limit represented as 1.

Set the binary conversion mode with the mode parameter. The new binary level
is calculated by a logical operation on the present binary level. The present
setting is cancelled if the mode parameter is omitted. Before setting a value with
the LEVEL command, cancel the setting that has been made.

OR: set the specified range to 1
NOT: set the specified range to 0
XOR: reverse the specified range

LINE LINE
(Command)

Action Draws a straight line in VRAM.

Format LINE X1, Y1, X2, Y2, VRAM [, [page#] [,drawing density or drawing mode]]

Example LINE 45,35,200,250,2,,255

Draws a straight line with drawing density 255 in the window memory between
the start point (45, 35) and end point (200, 250).

LINE Reference. Section 4

115

Description The LINE command draws a straight line between the start and end points.

Specify the VRAM where the line is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : 0 written to memory
1: 1 written to memory

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

LINE INPUT LINE INPUT
(Command)

Action Assigns a line of data input from the keyboard to a character variable.

Format LINE INPUT [prompt character string{, or ;}] character variable

Example LINE INPUT ”DATA”;A$

Displays “DATA” on the screen and waits for keyboard input of the line of
character data to be assigned to the character variable A$.

Description Operation waits for data input from the keyboard when the LINE INPUT com-
mand is executed. Enter the line of data and press the Return Key to assign the
data to the variable.

Specify a character string for the prompt character string. This character string is
displayed to prompt for input of the required data. The prompt character string
must be separated from the subsequent character variable by a semicolon (;).
The specified prompt character string only is displayed when the LINE INPUT
command is executed.

Input the character variable as up to 255 1-byte characters, blanks, commas (,),
double quotation marks (”), and numbers. All characters entered from the time
the prompt is displayed until the Return Key is pressed are handled as a single
character string.

If the Return Key is pressed without entering characters, a null string (”) is
assigned to the character variable.

LINE INPUT Reference. Section 4

116

LINE INPUT WAIT LINE INPUT WAIT
(Command)

Action Inputs one line of data from the keyboard with a time limitation.

Format LINE INPUT WAIT wait time, [prompt character string;] character
variable

Example LINE INPUT WAIT 70,”ANSWER”;AN$

Displays the input prompt message “ANSWER” on the screen and waits 7
seconds for keyboard input of the character data to be assigned to the character
variable AN$.

Description Operation waits for the specified wait time for data input from the keyboard when
the LINE INPUT WAIT command is executed. Enter the line of character data
and press the Return Key within the specified wait time to assign the data to the
character variable.

The LINE INPUT WAIT command is identical to the LINE INPUT command,
except for the time limit. If the Return Key is pressed without entering characters,
a null string (”) is assigned to character variable. If the time specified by wait time
passes, the variables will not change.

Specify the wait time in units of 0.1 second.

LINE INPUT# LINE INPUT#
(Command)

Action Reads a line of data from a sequential access file and assigns it to a character
variable.

Format LINE INPUT # file#, character variable

Example LINE INPUT #1,L$

Reads a line of data from file #1 and assigns the data to character variable L$.

Description Specify the file# as the number in which the random access file was opened with
the OPEN statement.

All characters including blanks, commas (,), double quotation marks (”), and
numbers between the first character read (including a blank) and the carriage
return (CHR$(13)) are read to the character variable.

The LINE INPUT# command can be used in combination with the FOR ... NEXT
statements to read consecutive lines of a file up to each carriage return
(CHR$(13)) to successive character variables.

The LINE INPUT# command is ideal for reading a line of data up to the carriage
return (CHR$(13)) from a random access file containing both character and
numeric variables delimited by blanks or commas (,).

Unlike the LINE INPUT command, the LINE INPUT# command displays no
prompt message.

LIST LIST
(Command)

Action Displays all or part of the program contents.

Format LIST [line# 1] [–line# 2]

Example LIST 100–190
Displays the program between line 100 and line 190 on the screen.

Description Displays the program between line# 1 and line# 2 on the screen.

The entire program is displayed if the line# 1 and line# 2 parameters are omitted.
Only line# 1 is printed if line# 2 is not specified. Lines from the start of the
program to line# 2 are printed if line# 1 is not specified.

LIST Reference Section 4

117

Use a period (.) instead of line# 1 or line# 2 to specify the current program line.
The current line is indicated by the pointer. The current line is the last line input
during program creation or the last line displayed with the LIST command.

LNUM Label NUMber
(Function)

Action Determines the number of labelled images.

Format LNUM

Example LN=LNUM

Assigns the number of labelled images to variable LN.

Description The LNUM functions determines the number of images labelled with the LABEL
command.

The LABEL command must be executed before the LNUM function is used.

–1 is returned if over 255 labels exist.

LOAD LOAD
(Command)

Action Loads a program from disk to memory.

Format LOAD file name [, R]

Example LOAD ”C:PRO1”

Loads the file PRO1 from the memory card.

Description The LOAD command loads the file specified with the file name parameter. The
currently loaded program is deleted from memory.

If the R option is specified, the program is run with the currently open files
immediately it is loaded.

Use the MERGE command to load a program without deleting the currently
loaded program.

LOC LOCation
(Function)

Action Determines the current I/O position within the specified file.

Format LOC (file#)

Example L=LOC(1)

Assigns the current position of I/O operation in file#1 to variable L.

Description Specify the file# as the number in which the file was opened with the OPEN
statement.

The position returned by the LOC function depends on the type of file, as defined
in the table below.

File Type Value returned by LOC

Random access file Returns the last record# read or written with the GET# or PUT# command as an integer
value.

Sequential access file Returns the number of records read or written since the file was opened as an integer value.

RS-232C Returns the number of bytes remaining in the communication buffer as an integer value.

LOC Reference Section 4

118

LOCATE LOCATE
(Command)

Action Sets the cursor position on the text display and whether the cursor is displayed.

Format LOCATE [column] [, line] [, cursor display switch]

Example LOCATE 5, 20

Moves the cursor position to the character 5 position (6th character from the left)
on line 20 (21st line from the top).

Description The LOCATE command moves the cursor on the text display and turns the
cursor display on or off.

Specify the horizontal (X) coordinate with the column parameter between 0 and
63. The default value is 0.

Specify the vertical (Y) coordinate with the line parameter between 0 and 24. If
this value is omitted, the cursor remains in the line position when the LOCATE
command was executed.

Specify the cursor display switch parameter as 0 or 1. The meaning of this
setting is shown in the table below. If this value is omitted, the cursor display
status when the LOCATE command was executed is maintained.

Cursor display switch parameter Description

0 No cursor is displayed on the screen.

1 A cursor is displayed on the screen.

Note It is not possible to omit the X coordinate, Y coordinate, and cursor display
switch with a LOCATE command.

LOF Length Of File
(Function)

Action Determines the size of a file.

Format LOF (file#)

Example SIZE=LOF(1)

Assigns the size of file#1 open for I/O operation to variable SIZE.

Description Specify the file# as the number in which the file was opened with the OPEN
statement.

The size returned by the LOF function depends on the type of file, as defined in
the table below.

File Type Value returned by LOF

Random access file Returns the file size as the maximum record number.

Sequential access file Returns the file size as a number of bytes.

RS-232C Returns the free space in the communication buffer as a
number of bytes.

LOG LOGarithm
(Function)

Action Determines the natural logarithm of a number.

Format LOG (numeric expression)

Example A=LOG(B)

Assigns the natural logarithm of variable B to variable A.

LOG Reference Section 4

119

Description The LOG function returns the natural logarithm (to base e = 2.71828) of the nu-
meric expression parameter. The numeric expression must be specified as a
positive value.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The LOG function always returns a double-
precision real number.

The EXP function has the opposite action to the LOG function.

LPOINT Label POINT
(Function)

Action Determines the label number of a labelled image at a specified position.

Format LPOINT (X, Y)

Example N=LPOINT(128,256)

Assigns the label number from the labelled image at coordinates (128, 256) to
variable N.

Description The LPOINT function finds the label number at a specified coordinate position
from the label number data obtained with the LABEL command

The function returns 0 if no labelled image or a hole in a labelled image exists at
the specified coordinates.

The LABEL command must be executed before the LPOINT command is used.

LPUTIMG Label PUT IMaGe
(Command)

Action Draws a labelled image in VRAM.

Format LPUTIMG label#, VRAM [, [page#] [, plane#]]

Example LPUTIMG 2,3,,2

Draws the image with label #2 to plane 2 of the image memory.

Description The LPUTIMG command draws labeled image data obtained with the LABEL
command to VRAM.

Specify the label number of the image to be drawn with the label# parameter.

Specify the VRAM where the image is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

Specify the plane# when writing to a frame memory. Specify –1 to write the
image to all planes. The image is not written to planes write protected with the
MASKBIT command.

The LABEL command must be executed before the LPUTIMG command is
used.

LPUTIMG Reference. Section 4

120

LSET Left SET
(Command)

Action Writes left-justified character data to a variable area defined with the FIELD
command.

Format LSET character variable = character string

Example LSET A$=”BASIC”

Left justifies the character string “BASIC” and writes it to the variable area
defined with the variable name A$.

Description Specify a character variable name defined with the FIELD command with the
character variable parameter.

Specify a character constant or character variable as the character string.

Excess characters are lost from the right of the character string if the length of
the specified character string exceeds the length of the character variable
defined with the FIELD command. Conversely, if the length of the specified char-
acter string is less than the length of the character variable, the remaining
positions are filled with blanks.

LSORT Label SORT
(Command)

Action Renumbers labels in order of area.

Format LSORT mode

Example LSORT 0

Renumbers the label numbers in descending order of area.

Description The LSORT command sorts the labeled image data obtained with the LABEL
command into order of area.

Specify the mode parameter to 0 to sort the label numbers in descending order
or to 1 to sort the label numbers in ascending order.

The LABEL command must be executed before the LSORT command is used.

LTRIM$ Left TRIM$
(Function)

Action Deletes spaces to the left of a character string.

Format LTRIM$ (character string)

Example A$=LTRIM$(” JAPAN”)

Assigns “JAPAN” to variable A$.

Description Returns the character string (1- or 2-byte characters) with the spaces removed
from the left.

MASKBIT MASKBIT
(Command)

Action Disables writing to specific planes in the frame memory.

Format MASKBIT VRAM, [page#], bit data

Example MASKBIT 2,,&HFF

Disables writing to the window memory.

MASKBIT Reference. Section 4

121

Description The MASKBIT command enables or disables writing to each plane of the frame
memory.

Specify the VRAM with the VRAM parameter, as follows:

2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

Specify the plane to be write disabled with the bit data parameter. Set the bit
corresponding to a plane to 1 to disable writing or to 0 to enable writing.

MDATA Measure DATA
(Function)

Action Reads the measured results, such as area, center of gravity, and axis angle.

Format MDATA (binary image plane#, measured data)

Example A=MDATA(0,2)

Assigns the center of gravity X coordinate of the binary image in plane 0 in pixels
to variable A.

Description The MDATA function reads the area, center of gravity, and the axis angle results
measured with the MEASURE command.

Specify the binary image plane# as the plane number from which the data is
read.

Specify the measured data with one of the values listed below to determine the
the type of measured data to read. The calibration is based on the current scene
data, which is specified with the CHANGE command.

0: Area (pixel units)
1: Area after calibration
2: Center of gravity X (pixel units)
3: Center of gravity X after calibration
4: Center of gravity Y (pixel units)
5: Center of gravity Y after calibration
6: Axis angle (pixel units)
7: Axis angle after calibration

The MMODE and MEASURE commands must be executed before the MDATA
function is used.

MDATA2 Measure DATA2
(Function)

Action Reads the edge angle measurement results.

Format MDATA2 (binary image plane#, X array, Y array, function)

Example A=MDATA2(0,X,Y,0)

Assigns the edge angle in the rectangular region defined by X array and Y array
on binary image plane 0 to variable A.

Description The MDATA2 function reads the edge angle results measured with the
MEASURE command.

Specify the top-left coordinates of the rectangle where the edge angle is to be
determined with X array and the bottom-right coordinates with Y array. These
coordinates are matched to the rectangular window.

MDATA2 Reference. . Section 4

122

Set the function parameter to 0 to determine uncalibrated (pixel) data or to 1 to
determine calibrated data.

The calibration is based on the current scene data, which is specified with the
CHANGE command.

The MMODE command must be used to turn on the run function and the
MEASURE command executed before the MDATA2 function is used.

MEASURE MEASURE
(Command)

Action Measures the area, center of gravity, axis angle, simple run length, and detailed
run length.

Format MEASURE

Example MEASURE

Measures under the conditions set using MMODE or RMODE.

Description The MEASURE command measures the area, center of gravity, axis angle,
simple run length, and detailed run length under the conditions set using
MMODE and RMODE command.

Set the measurement conditions with the MMODE command before measuring
the area, center of gravity, or axis angle. Turn on the run function and set the
measurement conditions with the MMODE command before measuring the
simple run length.

Set the measurement conditions with the RMODE command before measuring
the detailed run length.

MENU MENU
(Command)

Action Returns to the Menu mode.

Format MENU

Example MENU

Returns to the Menu mode.

Description Quits the OVL mode and returns to the Menu mode.

MERGE MERGE
(Command)

Action Merges a program from the memory card with the program in memory.

Format MERGE filename

Example MERGE ”C:PRO1”

Merges the program PRO1 from the memory card.

Description Merges the program currently loaded in memory with the program specified by
the filename parameter from the memory card. The program is reorganized into
line number order after merging.

Existing lines in memory are deleted if line numbers are duplicated in the
programs in memory and in the memory card.

The program cannot be executed automatically after merging. Use the CHAIN
command to automatically execute programs.

MERGE Reference. . . Section 4

123

MID$ MIDdle$
(Function, Command)

Action Extracts part of a character string. Changes part of a character string, if required.

Format Format 1 (function): MID$(character variable, start position [, number of
characters])

Format 2 (command): MID$(character variable, start position [, number of
characters]) = character string

Example MID$(A$,6,8)=”F300 OVL”

Replaces the 8 characters starting from the 6th character with the character
string “F300 OVL” (8 characters).

Description Format 1

Extracts the specified number of characters from the start position of the charac-
ter variable.

Specify the position of the first character in the character variable to be extracted
as a value between 1 and the number of characters in the character variable.

Specify the number of characters to be extracted with the number of characters
parameter. All characters to the right of the start position are extracted if the
number of characters is omitted or if the number of characters exceeds the
actual number of characters between the start position and the right end of the
character variable.

Format 2

Replaces the specified number of characters from the start position of the char-
acter variable with the character string.

Specify the position of the first character in the character variable to be replaced
as a value between 1 and the number of characters in the character variable.

Specify the number of characters to be replaced with the number of characters
parameter. All characters to the right of the start position are replaced if the num-
ber of characters is omitted or if the number of characters exceeds the actual
number of characters between the start position and the right end of the charac-
ter variable.

Specify the character string as a character constant or a character variable.

MKD$ MaKe Double$
(Function)

Action Converts a double-precision value to internal character-type representation.

Format MKD$ (double-precision value)

Example C$=MKD$(C#)

Converts the specified double-precision real number variable C# to a character
string and assigns it to variable C$.

Description Because numeric data cannot be handled in a random access file, the double-
precision numeric data must be converted to character-type numeric data with
the MKD$ function before it can be written to a random access file. This charac-
ter-type numeric data is then converted to a character string corresponding to
the internal representation (binary representation) of the number type, which is
used in the random access file.

The MKD$ function converts a double-precision real number to an 8-byte
character string.

The CVD function reverts a character-type double-precision number converted
with the MKD$ function to a numeric value.

MKD$ Reference. . . . Section 4

124

MKDIR MaKe DIRectory
(Command)

Action Creates a new directory for the memory card.

Format MKDIR directory name

Example MKDIR ”BASIC”

Creates a new directory named “BASIC” under the current directory.

Description Specify the name of the new directory name with the directory name parameter.
An error occurs if a directory with the specified name already exists in the same
path.

The new directory is created under the current directory if no new path is
specified with the directory name.

If a new path is specified with the directory name, the new directory is created
outside the current directory.

Use the ¥ symbol to delimit directories.

MKI$ MaKe Integer$
(Function)

Action Converts an integer value to internal character-type representation.

Format MKI$ (integer)

Example A$=MKI$(A%)

Converts the specified integer variable A% to a character string and assigns it to
variable A$.

Description Because numeric data cannot be handled in a random access file, the integer
data must be converted to character-type numeric data with the MKI$ function
before it can be written to a random access file. This character-type numeric
data is then converted to a character string corresponding to the internal
representation (binary representation) of the number type, which is used in the
random access file.

The MKI$ function converts an integer to a 2-byte character string.

The CVI function reverts a character-type integer number converted with the
MKI$ function to a numeric value.

MKL$ MaKe Long $
(Function)

Action Converts a long integer value to internal character-type representation.

Format MKL$ (long integer)

Example A$=MKL$(A&)

Converts the specified long integer variable A& to a character string and assigns
it to variable A$.

Description Because numeric data cannot be handled in a random access file, the long
integer data must be converted to character-type numeric data with the MKL$
function before it can be written to a random access file. This character-type
numeric data is then converted to a character string corresponding to the
internal representation (binary representation) of the number type, which is
used in the random access file.

The MKL$ function converts a long integer to a 4-byte character string.

The CVL function reverts a character-type long integer number converted with
the MKL$ function to a numeric value.

MKL$ Reference Section 4

125

MKS$ MaKe Single$
(Function)

Action Converts a single-precision value to internal character-type representation.

Format MKS$ (single-precision value)

Example B$=MKS$(B!)

Converts the specified single-precision real number variable B! to a character
string and assigns it to variable B$.

Description Because numeric data cannot be handled in a random access file, the single-
precision numeric data must be converted to character-type numeric data with
the MKS$ function before it can be written to a random access file. This charac-
ter-type numeric data is then converted to a character string corresponding to
the internal representation (binary representation) of the number type, which is
used in the random access file.

The MKS$ function converts a single-precision real number to a 4-byte
character string.

The CVS function reverts a character-type single-precision number converted
with the MKS$ function to a numeric value.

MMODE Measure MODE
(Command)

Action Sets the basic measurement mode for each binary image plane.

Format MMODE binary image plane#, measured pixels [, [window function] [, [paint
function] [, [fill function] [, run function]]]]

Example MMODE 0,0,1

Sets measurement of black pixels for binary image plane 0, with the window
function on.

Description The MMODE command sets the conditions for measurement with the
MEASURE command for each of the 8 binary image planes. Specify the binary
image plane for which the measurement conditions are set with the binary image
plane# parameter. Set the binary image plane# to –1 to set the conditions for all
binary image planes simultaneously.

Set the measured pixels parameter to set which pixels to measure, as follows:

0: Black pixels
1: White pixels

Normally set the window function parameter to 1.

Set the paint function parameter to set the paint and pattern matching functions,
as follows:

0: No painting or pattern matching
1: Carry out painting
2: Carry out pattern matching
The default value is 0.

Set the fill function parameter to set the contour measurement, as follows:

0: Normal
All of the white pixels in the window will be taken as the object for mea-
surement.

1: Fill
All of the white pixels between the starting and ending points along the
horizontal axis will be measured.

The default value is 0.

MMODE Reference. . Section 4

126

Set the run function parameter to set the simple run length data measurement,
as follows:

0: Do not measure the simple run length data
1: Measure the simple run length data
The default value is 0.

NAME NAME
(Command)

Action Renames files stored in the memory card.

Format NAME old filename AS new filename

Example NAME ”ABC” AS ”DEF”

Renames the file name ABC as the file name DEF.

Description Specify the old filename as the name of an existing file in the memory card as a
character string. An error occurs if the specified filename does not exist.

Specify the new name of the file with the new filename parameter. Use only
1-byte characters. An error occurs if a file with the same name as the specified
new filename already exists.

A filename cannot be renamed with the NAME command if the file attribute is set
to write-protected with the SET command. Use the SET command to remove the
write protection before renaming the file with the NAME command.

NEW NEW
(Command)

Action Deletes the program from memory.

Format NEW

Example NEW

Deletes the program from memory.

Description The NEW command deletes the program from memory and resets numeric
constants to 0 and character constants to a null string (” ”).

Any open I/O files are closed.

The Direct mode is selected after the NEW command is executed.

NPIECE Number of PIECE
(Function)

Action Determines the number of smaller character strings the specified character
string is divided into by the delimiters.

Format NPIECE (character string, delimiter)

Example A=NPIECE(”OMRON F300”,” ”)

Because the space character is set as the delimiter, OMRON and F300 are
considered as separate character strings, so 2 is assigned to variable A.

Description The NPIECE function determines the number of small character strings
separated by the delimiters in the specified character string.

Returns the number of character strings divided by the delimiters.

The function returns 1 if the delimiter character is not contained in the character
string.

NPIECE Reference. . . Section 4

127

OCT$ OCTal$
(Function)

Action Converts a decimal number to an octal character string.

Format OCT$ (numeric expression)

Example A$=”&O”+OCT$(10)

Converts the decimal value 10 to the octal character string 12, concatenates this
character string with the character string “ &O”, and assigns the result (&O12) to
the character variable A$.

Description The OCT$ function converts a decimal value to an octal character string. It does
not add the “ &O” prefix to indicate an octal character string.

Specify the numeric expression as a decimal numeric constant or numeric
variable between –2147483648 (–231) and 2147483647 (231–1). Any decimal
places in the specified numeric expression are rounded off to create an integer
which is converted to the octal character string.

The relationship between the decimal numeric expression and octal character
string is as follows:

Numeric expression (decimal) Octal character string

–2147483648 to –1 “20000000000” to “37777777777”

0 to 2147483647 “0” to “17777777777”

To convert an octal character string back to numeric data, append the “ &O”
prefix to indicate an octal character string, then convert the character string with
the VAL function.

ON COM GOSUB ON COMmunication GO to
SUBroutine
(Command)

Action Defines the jump destination of the interrupt subroutine when data is received at
the communication port.

Format ON COM (RS-232C port#) GOSUB line# or label

Example ON COM(1) GOSUB *PROCESS

Defines the jump destination of the interrupt subroutine when data is received by
the RS-232C channel 0 as the label name *PROCESS.

Description Specify the RS-232C port# as 1 or 2. The default value is 1. The ON COM
GOSUB commands define the jump destination of the interrupt subroutine
executed when data is received at the specified communication port. Interrupt
operation starts when it is enabled by the COM ON command. Operation returns
when the RETURN command is executed.

10 OPEN ”COM:” AS #1
20 ON COM GOSUB *LABEL1
30 COM ON

50 *LABEL1

90 RETURN
Interrupt subroutine

ON COM GOSUB Reference. Section 4

128

ON ERROR GOTO ON ERROR GOTO
(Command)

Action Defines the first line of the error processing routine executed when an error
occurs.

Format ON ERROR GOTO line# or label or 0

Example ON ERROR GOTO 1000

Defines the jump destination when an error occurs as line# 1000.

Description The ON ERROR ... GOTO command defines the jump destination of the error
processing routine executed when an error occurs. When an error occurs,
operation jumps to the specified jump destination and the error routine is
executed to reset the error.

Specify the first line of the error processing routine with the line# or label param-
eter.

Specify 0 instead of the line# or label to cancel the error processing routine jump
destination defined previously with the ON ERROR GOTO command. If an error
subsequently occurs, an error message is displayed and program operation
stops. When an error occurs, the error code and line number where the error
occurred are assigned to the system variables ERR and ERL.

Operation returns to the original program when the RESUME command at the
end of the error processing routine is executed.

ON HELP GOSUB ON HELP key GO to SUBroutine
(Command)

Action Defines the first line of the interrupt subroutine executed when the HELP Key is
pressed.

Format ON HELP GOSUB line# or label

Example ON HELP GOSUB *SHORI

Defines the jump destination when the HELP Key is pressed as the label name
*SHORI.

Description The line# or label parameter defines the jump destination of the interrupt
subroutine executed when the HELP Key is pressed.

The interrupt subroutine defined by the line# or label parameter is executed
when the HELP Key is pressed during program execution if the interrupt
operation is enabled with the HELP ON command.

The ON HELP GOSUB command is one type of key input interrupt routine. It is
used as an aid to program operation by explaining how to use the program and
input data.

Operation returns to the original program when the RETURN command at the
end of the interrupt subroutine is executed. Operation can be transferred to a
different position from the position where the interrupt occurred by specifying a
line# or label parameter with the RETURN command.

ON INTR GOSUB ON INTeRrupt GO to SUBroutine
(Command)

Action Defines the first line of the interrupt subroutine executed when a STEP interrupt
occurs.

Format ON INTR GOSUB line# or label

Example ON INTR GOSUB 2000

Defines the first line of the interrupt subroutine executed when a STEP interrupt
occurs as line# 2000.

ON INTR GOSUB Reference. Section 4

129

Description The ON INTR GOSUB command defines the line# or label of the first line of the
interrupt subroutine executed when a STEP interrupt occurs. Any further STEP
interrupt occurring during execution of the interrupt subroutine is ignored.

ON KEY GOSUB ON function KEY GO to SUBroutine
(Command)

Action Defines the first line of the interrupt subroutine executed when a function key is
pressed.

Format ON KEY GOSUB line# or label [, line# or label...]

Example ON KEY GOSUB ,,*PROCESS

Defines the jump destination when a function key (F3) is pressed as the label
name *PROCESS.

Description The line# or label parameter defines the jump destination of the interrupt
subroutine executed when a function key is pressed.

Up to ten line# or label parameters can be specified delimited by commas (,).
The order of the line# or label parameters corresponds to the function key num-
bers.

The interrupt subroutine defined by the line# or label parameter is executed only
when the corresponding function key is pressed during program execution.

The ON KEY GOSUB command is one type of key input interrupt routine. Defin-
ing frequently executed routines or frequently input data in the interrupt
subroutines makes the function keys a convenient aid to programming.

Operation returns to the original program when the RETURN command at the
end of the interrupt subroutine is executed. Operation can be transferred to a
different position from the position where the interrupt occurred by specifying a
line# or label parameter with the RETURN command.

ON STOP GOSUB ON STOP key GO to SUBroutine
(Command)

Action Defines the first line of the interrupt subroutine executed when the STOP Key is
pressed.

Format ON STOP GOSUB line# or label

Example ON STOP GOSUB *PROCESS

Defines the jump destination when the STOP Key is pressed as the label name
*PROCESS.

Description The line# or label parameter defines the jump destination of the interrupt
subroutine executed when the STOP Key is pressed.

The interrupt subroutine defined by the line# or label parameter is executed
when the STOP Key is pressed during program execution if the interrupt
operation is enabled with the STOP ON command.

The ON STOP GOSUB command is one type of key input interrupt routine. De-
fining how to stop a specified operation in the interrupt subroutine at the
specified jump destination allows the operation to be stopped by pressing the
STEP Key.

Operation returns to the original program when the RETURN command at the
end of the interrupt subroutine is executed. Operation can be transferred to a
different position from the position where the interrupt occurred by specifying a
line# or label parameter with the RETURN command.

ON STOP GOSUB Reference Section 4

130

ON TIME$ GOSUB ON TIME$ GO to SUBroutine
(Command)

Action Defines the time when the timer interrupt is generated and the first line of the
interrupt subroutine.

Format ON TIME$ = “HH:MM:SS” GOSUB line# or label

Example ON TIME$=”02:00:00” GOSUB 1000

Sets the interrupt to be generated at 02:00:00 and defines the first line of the
interrupt subroutine executed at this time as line# 1000.

Description The ON TIME$ GOSUB command sets the time when the timer interrupt is
generated and defines the line# or label of the first line of the interrupt subroutine
executed at the set time. If branching is enabled with the TIME$ ON command,
the specified interrupt routine is executed when the set time is reached.

Set the time in the format: HH:MM:SS. Set the hour between 00 and 23 and set
the minutes and seconds between 00 and 59.

Example 1:
ON TIME$ = “01:00:00” GOSUB 1000 ... interrupt generated at 1 am.

Example 2:
ON TIME$ = “10:30:00” GOSUB 1000 ... interrupt generated at 10.30 am.

The HH:MM:SS set with this command does not affect the setting of the internal
clock.

The line# or label parameter defines the first line of the interrupt subroutine.

Operation returns to the original program when the RETURN command at the
end of the interrupt subroutine is executed. Operation can be transferred to a
different position from the position where the interrupt occurred by specifying a
line# or label parameter with the RETURN command.

The time setting is 00:00:00 after the F300 power is turned on.

ON GOSUB ON GO to SUBroutine
(Command)

Action Branches program operation according to specified conditions.

Format ON expression GOSUB [line# or label] [, line# or label...]

Example ON S GOSUB *STARTRTN,*ENDRTN,*ERRRTN

Branches to subroutine *STARTRTN when the variable S equals 1, to
*ENDRTN when S equals 2, and to *ERRRTN when S equals 3.

Description Program operation branches to subroutines specified by a line# or label
according to the value of the expression.

The subroutine defined with the first line# or label parameter is executed when
the expression equals 1, the subroutine defined with the second line# or label
parameter is executed when the expression equals 2, and so on.

Program operation flows to the next line if the expression equals 0 or if the line#
and label parameters are omitted.

When the RETURN command at the end of the subroutine is executed, program
operation jumps back to the line after the ON GOSUB command. If a line# or
label parameter is specified with the RETURN command, operation jumps to the
specified line.

ON GOSUB Reference Section 4

131

ON GOTO ON GO TO
(Command)

Action Branches program operation according to specified conditions.

Format ON expression GOTO [line# or label] [, line# or label...]

Example ON T GOTO 200,500,900

Branches to line 200 when the variable T equals 1, to line 500 when T equals 2,
and to 900 when T equals 3.

Description Program operation branches to the line specified by a line# or label according to
the value of the expression. Operation jumps to the line defined with the first
line# or label parameter when the expression equals 1, the second line# or label
parameter when the expression equals 2, and so on.

Program operation flows to the next line if the expression equals 0 or if the line#
and label parameters are omitted.

OPEN(1) OPEN
Command

Action Opens a file.

Format OPEN filename [FOR {OUTPUT or INPUT or APPEND}] AS file#

Example OPEN ”DATA01” FOR OUTPUT AS #1

Opens the sequential access file DATA01 in the memory card as file#1 to output
data to the file.

Description A sequential access file or random access file in the memory must be opened
using the OPEN command with a specified file# before file I/O operations are
possible. Use the CLOSE command to close the file after I/O operations are
complete.

When opening a sequential access file, the I/O mode must be specified, as one
of the following:

INPUT ... read data from the file
OUTPUT ... write data to the file
APPEND ... append data to an existing file

Do not specify the I/O mode when opening a random access file. If the I/O mode
is specified, the random access file is treated as a sequential access file with the
same name, so that an error occurs when I/O operations are attempted with the
GET# and PUT# commands.

Specify the file# as a positive integer between 1 and 13. The same file# cannot
be applied to more than one open file simultaneously. The file# assigned to the
file can be used instead of the filename for all I/O operations until the file is closed
with the CLOSE command.

Use the INPUT# and LINE INPUT# commands and the INPUT$ function to read
data from a sequential access file and the PRINT#, PRINT# USING, and
WRITE# command to write data to the sequential access file.

Define the file buffer with the FIELD command before I/O operations with a
random access file. Use the LSET and RSET commands to set data in the file
buffer and the PUT# and GET# commands to read and write data to and from the
file.

OPEN(1) Reference. . Section 4

132

OPEN(2) OPEN
(Command)

Action Opens the RS-232C port.

Format OPEN ”COM [RS-232C port#]: [baud rate [parity [data length [stop bits [XON
switch]]]]]” [FOR OUTPUT or INPUT] AS [#] file#

Example OPEN ”COM:” FOR OUTPUT AS #1

Opens the RS-232C channel 0 for data output.

Description Specify the RS-232C port# as 1 or 2, as follows:
1: channel 0
2: channel 1

The default value is 1.

The OPEN command opens the RS-232C port for data I/O. When data I/O is
complete, close the RS-232C port with the CLOSE command.

Set the baud rate, parity, data length, stop bits, and XON switch parameters to
match the specifications of the device communicated with. Refer to the following
table for details of these settings. The default value shown in the table is
automatically set if the parameter is omitted.

Parameter Setting Description Default value

Baud rate 1200 1,200 bps 9600

2400 2,400 bps

4800 4,800 bps

9600 9,600 bps

19200 19,200 bps

Parity E Even parity check Ny

O Odd parity check

N No parity check

Data length 7 Each character 7 bits 8g

8 Each character 8 bits

Stop bits 1 One stop bit 1p

2 Two stop bits

XON switch X XON/XOFF control enabled ---

--- XON/XOFF control disabled

S parameter S ON Np

N OFF

OPTION BASE OPTION BASE
(Command)

Action Declares minimum value of the array qualifier.

Format OPTION BASE 0 or 1

Example OPTION BASE 0

Declares the minimum value of the array qualifier as 0.

Description The OPTION BASE command declares the minimum value of the array qualifier
as 0 or 1.

The qualifier minimum value is automatically set to 0 if an array variable is
declared with the DIM command in a program containing no OPTION BASE

OPTION BASE Reference. . . Section 4

133

command. The OPTION BASE command is used to set the qualifier minimum
value to 1. After setting the qualifier minimum value with the OPTION BASE
command, do not execute the OPTION BASE command again in the same
program to change the minimum value.

PIECE$ PIECE$
(Function)

Action Extracts partial character strings divided by the delimiter characters from the
specified character string.

Format PIECE$ (character string, delimiter character string [, start# [, end#]])

Example A$=PIECE$(”F300 OVL”,” ”,2)

Assigns the second partial character string “OVL” from the character string
“F300 OVL” to variable A$.

Description The PIECE$ function returns the partial character strings between the specified
start# and end # divided by the delimiter characters from the specified character
string.

If the end# is omitted, the single partial string corresponding to the start# is re-
turned. The first partial character string is returned if both the start# and end# are
omitted. The entire character string is returned if it is not divided by the specified
delimiter character.

PIN Port IN
(Function)

Action Reads the bit status of a specified bit of the Terminal Block Unit or Parallel I/O
Unit input port.

Format PIN (bit address)

Example A=PIN(12)

Assigns the bit status of bit 12 of the Terminal Block Unit or Parallel I/O Unit input
port to variable A.

Description The PIN function reads the bit status of the Terminal Block Unit or Parallel I/O
Unit input port bit specified with the bit address parameter. The function returns a
value, as follows:

1: bit status ON
2: bit status OFF

If both Terminal Block Units and Parallel I/O Units are connected, the PIN
function does not differentiate between the two. The bit status can be specified
up to the total number of input bits for all units.

Bit address 0 is the lowest terminal number of the lowest numbered slot.

POINT POINT
(Function)

Action Determines the density of the specified coordinates in VRAM.

Format POINT (X, Y, VRAM [, page#])

Example G=POINT(128,255,3,0)

Assigns the density at image memory coordinates (128, 255) to variable G.

POINT Reference. . . . Section 4

134

Description The POINT function reads the density at the specified coordinates (X, Y) in the
specified VRAM.

Specify the VRAM with the VRAM parameter, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

The function returns either 0 or 1 if a plane VRAM is specified or a value between
0 and 255 if a frame VRAM is specified.

Omit the page# or set to 0.

POLYGON POLYGON
(Command)

Action Draws a polygon in VRAM.

Format POLYGON number of data, X array, Y array, VRAM [, [page#] [, [drawing den-
sity or drawing mode] [, lineart]]]

Example POLYGON 28, XD, YD, 3,,128,0

Draws a polygon with drawing density 128 in image memory with the points at
the coordinates defined in the arrays XD and YD with 28 data items.

Description The POLYGON command draws a polygon with points at the coordinates in the
X array and Y array from the start of the array to the number of points specified
with the number of data parameter.

Specify the number of data as a value up to 64.

Specify the VRAM where the polygon is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : 0 written to memory
1: 1 written to memory

POLYLINE POLYLINE
(Command)

Action Draws a polyline in VRAM.

Format POLYLINE number of data, X array, Y array, VRAM [, [page#] [, [drawing
density or drawing mode]]]

Example POLYLINE 28, XD, YD, 2,,128

Draws a polyline with drawing density 128 in window memory plane 7 with the
points at the coordinates defined in the arrays XD and YD with 28 data items.

POLYLINE Reference Section 4

135

Description The POLYLINE command draws a polyline with points at the coordinates in the
X array and Y array from the start of the array to the number of points specified
with the number of data parameter.

Specify the number of data as a value up to 64.

Specify the VRAM where the polyline is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

POS POSition
(Function)

Action Determines the current cursor column position.

Format POS (numeric expression)

Example HP%=POS(0)

Assigns the current cursor column position (0 to 63) to the variable HP%.

Description The POS function determines the position of the character cursor in the X
direction (along the line).

The parameter of the POS function is a dummy. It has no special significance,
but cannot be omitted. Normally, set the dummy parameter to 0.

Use the CSRLIN function to determine the line where the cursor is positioned.

POUT Port OUT
(Command)

Action Controls the bit status of a specified bit of the Terminal Block Unit or Parallel I/O
Unit output port.

Format POUT bit address, 0 or 1

Example POUT 2,1

Turns ON bit 2 of the Terminal Block Unit or Parallel I/O Unit output port.

Description The POUT function controls the bit status of the Terminal Block Unit or Parallel
I/O Unit output port bit specified with the bit address parameter.
If both Terminal Block Units and Parallel I/O Units are connected, the POUT
function does not differentiate between the two. The bit status can be specified
up to the total number of input bits for all units. Specify the bit address of the bit to
control as a value between 0 and (maximum bit address – 1).

Bit address 0 is the lowest terminal number of the lowest numbered slot.

PRINT PRINT
(Command)

Action Displays data on the text display.

Format PRINT [expression] [; or , [expression]..] [; or ,]

Example PRINT A$,B$

Displays the character data defined by the character expressions A$ and B$
sequentially on the text display.

PRINT Reference. . . . Section 4

136

Description The expression parameter can be specified as a character expression or a
numeric expression.

Delimit multiple expressions by commas (,) or semicolons (;). The display
depends on the delimiter character used, as follows:

Comma (,)
14 characters are automatically allocated for each expression. An expression
less than 14 characters in length is separated from the next expression by
blanks.

Semicolon (;)
The expressions are displayed closed together. No fixed data length is allocated
to the expressions. Numeric data is displayed preceded by a space for the sign
and followed by a blank delimiter character.

Character returns are added automatically under the conditions described be-
low.

Only a character return is displayed if all expression parameters are omitted. If
no semicolon (;) is included after the final expression parameter, the character
return is added after all the expressions are displayed. If a semicolon (;) is
included after the final expression parameter, no character return is added after
all the expressions are displayed and the first expression specified with a
subsequent PRINT command is displayed consecutively.

A character return is added if the number of spaces remaining in the displayed
line is less than the number of characters in the specified expression. Character
data is displayed in the spaces remaining in the displayed line.

PRINT USING PRINT USING
(Command)

Action Displays formatted data on the text display.

Format PRINT USING format control character string ; expression [{; or ,}
expression ...] [; or ,]

Example PRINT USING ”& &###”;A$,B

Displays the character data and numeric data defined by the character
expression A$ and numeric data B sequentially on the text display, with 4
characters for A$ and 3 characters for B.

Description Specify the format control character string in double quotations (”). The specified
characters themselves are not displayed on the text display. The specified for-
mat control character string determines the number of characters and format in
the display of the expressions.

Specify the character string defining character data or numeric string defining
numeric data with the expression parameters.

Delimit multiple expressions by commas (,) or semicolons (;). The delimiter
character used does not affect the display.

The format control character string may contain two types of characters: one
type to control the display of character data and the other type to control the
display of numeric data. The specified format control character string characters
must match the type of data displayed. The control characters are described in
the following tables.

PRINT USING Reference. . . Section 4

137

Format Control Character Strings for Displaying Character Data

Character Description

! Display only the first character of the character string.

&(n blanks)& The number of characters displayed is defined by the number of blanks (n) contained between the
ampersands (&). A total of (n+2) characters is displayed from the start of the character string. The
remaining characters are ignored if the character string contains more than (n+2) characters. The
remaining character spaces are filled with blanks if the character string contains less than (n+2)
characters.

@ Display the character string unchanged.

_ The character following the underscore character is not only a format control character and is printed.

Format Control Character Strings for Displaying Numeric Data

Character Description

The number of # characters specifies the number of numeric data digits, including the +/– sign. If the
specified number of characters is less than the number of numeric characters, the displayed data is
right justified with blanks to the left.

. Insert the decimal point (.) in combination with the # characters to specify the decimal position.
Redundant decimal places are filled with zeros.

+ Specify the + sign as a prefix or suffix of the format control character string to print the + sign before
or after the numeric data. If two or more + signs are specified consecutively, the second (and
subsequent) + sign is considered to be outside the format control character string.

– Specify the – sign as a suffix of the format control character string, the minus sign for negative
numeric data is output to the right of the number (i.e., after the number) If two or more – signs are
specified consecutively, the second (and subsequent) – sign is considered to be outside the format
control character string.

** Specify two or more asterisks (*) at the start of the format control character string to output asterisks
instead of blanks to the left of the numeric data. The asterisks (*) fill all blanks in the specified number
of characters.

¥¥ Specify two or more yen signs (¥) at the start of the format control character string to output a yen
sign in the blank space to the left of the numeric data. The two yen signs (¥) occupy two character
spaces and one of these is used to print the yen sign.

**¥ Specify two or more asterisks (*) plus a single yen sign (¥) at the start of the format control character
string to output asterisks instead of blanks to the left of the numeric data and a yen sign in the blank
space immediately to the left of the numeric data. The two asterisks (*) and the yen sign (¥) occupy
three character spaces and one of these is used to print the yen sign.

, Use a comma (,) in combination with the # number characters to delimit each 3 digits of the integer
portion of the number. If the comma (,) is specified to the right of the decimal point (.), the comma (,) is
output after the numeric data.

^ ^ ^ ^ Specify four carets (^) after the # number characters to output the number in exponential format.

_ The character following the underscore character is not only a format control character and is printed.

A non-control character in the format control character string is displayed before
or after the character or numeric data.

A percent sign (%) is displayed in front of the numeric data if the digits of the
numeric data format specified with the expression parameters exceed the size
of the region specified by the format control characters.

PRINT # PRINT #
(Command)

Action Writes data to a sequential access file.

Format PRINT# file# [, expression[{ ; or ,} expression ...]] [; or ,]

Example PRINT #1,A$,B$

Organizes the character data defined by the character expressions A$ and B$
into sequential data in the order A$, B$, and writes the data to file#1.

PRINT # Reference. . . Section 4

138

Description Specify the file# as the number in which the sequential access file was opened
for output with the OPEN statement. After writing to the sequential access file is
complete, the file must be closed with the CLOSE statement.

Except for the fact that the PRINT# command writes data to a file instead of
displaying data on the screen, the command is identical to the PRINT command.
Refer to the PRINT command for information on specifying the expressions, on
the meaning of the delimiter characters, and on the rules covering the carriage
return characters.

PRINT# USING PRINT# USING
(Command)

Action Writes formatted data to a sequential access file.

Format PRINT file#, USING format control character string ; expression [{; or ,}
expression ...] [; or ,]

Example PRINT #1,USING ”& &###”;A$,B

Organizes the data defined by the character expression A$, formatted as 4
characters, and the numeric data B, formatted as 3 characters, into sequential
data in the order A$, B, and writes the data to file#1.

Description Specify the file# as the number in which the sequential access file was opened
for output with the OPEN statement. After writing to the sequential access file is
complete, the file must be closed with the CLOSE statement.

Except for the fact that the PRINT# USING command writes data to a file instead
of displaying data on the screen, the command is identical to the PRINT USING
command. Refer to the PRINT USING command for information on specifying
the format control character string and expressions, on the meaning of the
delimiter characters, and on the rules covering the carriage return characters.

PSET Point SET
(Command)

Action Draws a point in VRAM.

Format PSET X, Y, VRAM [, [page#] [, drawing density or drawing mode]]

Example PSET 100,300,2,,128

Draws a point with drawing density 128 in the window memory at coordinates
(100, 300).

Description The PSET command draws a point at the specified coordinates.

Specify the VRAM where the point is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : 0 written to memory
1: 1 written to memory

PSET Reference Section 4

139

The drawing mode settings operate as follows:

OR: The current contents of the image memory ORed with 255 are written
to memory.

NOT: 0 is written to memory
XOR: The current contents of the image memory are inverted.

The default value for the drawing mode is OR.

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

PUT # PUT #
(Command)

Action Writes data from the file buffer to a random access file.

Format PUT # file# [, numeric expression]

Example PUT #1,8

Writes data from the file buffer to the #8 record in the random access file opened
as file #1.

Description The PUT# command writes the data stored in the file buffer to the random
access file specified with the file#.

Specify the file# as the number in which the random access file was opened with
the OPEN statement.

Specify the number of the record to be written to the file with the numeric expres-
sion. If omitted, the record after the record# used with the previous GET# or
PUT# command is read.

PUT@ PUT@
(Command)

Action Draws the array variable data stored in the image memory to VRAM.

Format PUT@ X, Y, array name, VRAM [, [page#] [, plane#]]

Example PUT@ 100,300,A,2

Draws the contents of the array A to a rectangular region of the window memory
with top-left coordinates (100, 300).

Description The PUT@ command draws (overwrites) data from the specified array to a
rectangular area with the top-left coordinates (X, Y).

Specify the VRAM where the data is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

Specify the plane number if a frame VRAM is specified with the VRAM
parameter (2 to 4).

If a frame VRAM is specified, the contents of planes write protected with the
MASKBIT command remain unchanged.

PUT@ Reference Section 4

140

RANDOMIZE RANDOMIZE
(Command)

Action Initializes random number generation.

Format RANDOMIZE [numeric expression]

Example RANDOMIZE 10

Sets the seed value to initialize random number generation to 10.

Description The RANDOMIZE command sets a new seed value to initialize random number
generation. The RANDOMIZE command only initializes random number
generation; use the RND function to generate random numbers.

Specify the seed value with the numeric expression between –32768 to 32767. If
the numeric expression is omitted, a message is displayed and the system waits
for a seed value between –32768 to 32767 to be input from the keyboard.

RDATA Runlength DATA
(Function)

Action Reads the detailed run length data.

Format RDATA (XY coordinate, run#, measured data)

Example N=RDATA(0,2,2)

Assigns the edge start coordinate of the #2 run at XY coordinate position 0.

Description The RDATA command reads measurement data based on the detailed run
length data obtained with the MEASURE command.

Specify the coordinates where the run data (line length) is to be read. Set the Y
coordinate if the RMODE measuring direction was set to the X direction, or set
the X coordinate if the measuring direction was set to the Y direction.

Specify the number of the run data to be read at the specified XY coordinate
position with the run# parameter. The function returns 0 if the specified run#
exceeds the number of existing runs. The run# starts from 0.

Specify the type of data to be read from the specified run with the measured data
parameter, as follows:

0: Number of runs 1: Run length
2: Edge coordinate (start point)
3: Edge coordinate (end point)

The run# is ignored if the measure data is set to 0.

READ READ
(Command)

Action Reads data defined with the DATA statement to a variable.

Format READ variable [, variable...]

Example READ A,B

Reads data to the numeric variables A and B.

Description The READ command reads the data defined with the DATA statement to
sequentially specified variables. Consequently, the READ command must be
used with the DATA statement.

Specify the variables separated by commas (,). The format of the variables must
match the format specified with the DATA statement.

READ Reference Section 4

141

If the number of variables specified for the READ command is less than the
number specified for the DATA statement, the remaining data is read by the next
READ command. The remaining data is ignored if no further READ command is
specified. The number of variables specified to be read must not exceed the
number specified with the DATA statement. Take care when programming
successive READ commands.

Execute the RESTORE command before the READ command to specify the line
containing the DATA statement to read. If no RESTORE command is used
before the READ command, the READ command reads the next data after the
previously read data (if any), otherwise it reads the data specified with the first
DATA statement in the program. Therefore , it is possible for READ commands
on different lines of the program to read the same data several times.

REM REMark
(Command)

Action Inserts remarks into the program.

Format {REM or , }remark

Example REM PROGRAM NAME PROGRAM01 or ’PROGRAM NAME PROGRAM01

Description The REM statement is non-executable and has not effect on the operation of the
program.

It is used to insert remarks and explanations into the program text.

A single-quotation mark (’) can be used instead of the REM statement.

All characters and symbols specified as the parameter are handled as a remark.
Commands and functions included in the remark are not executed. A colon (:) is
also considered as part of the remark and cannot be used to continue the line
onto the next line.

RENUM RENUMber
(Command)

Action Renumbers the lines in all or part of the program.

Format RENUM [new line#] [, [old line#] [, increment]]

Example RENUM 1000,100

Renumbers the current line 100 as line 1000 and renumbers all subsequent
lines to the end of the program in increments of 10.

Description The RENUM command renumbers the old line# as the new line# and renumbers
all subsequent lines to the end of the program by the specified increment. The
default value for the increment is 10.

The program is renumbered from the first line if the old line# is omitted. The
default value of the new line# is 10.

REPLACE REPLACE
(Command)

Action Searches for the specified old character string between line# 1 and line# 2 and
replaces the it with the new character string.

Format REPLACE old character string, new character string [, [line# 1 or label 1]
[–[line# 2 or label 2]]]

Example REPLACE ”FALSE”,”TRUE”,50–100

Replaces the word “FALSE” with “TRUE” between lines 50 and 100.

REPLACE Reference. Section 4

142

Description The REPLACE command replaces the old character string with the new charac-
ter string between line# 1 (or label 1) and line# 2 (or label 2) and replaces the it
with the new character string.

The search and replace operation starts from the first line of the program if the
line# 1 (or label 1) parameter is omitted. The search and replace operation
continues to the last line of the program if the line# 2 (or label 2) parameter is
omitted.

RESTORE RESTORE
(Command)

Action Specifies the line with the DATA statement to be read by the READ command.

Format RESTORE [line# or label]

Example RESTORE 150

Specify the DATA command in line 150 to be read by the READ command.

Description The RESTORE command specifies the DATA statement to be read by a
subsequent READ command with a line# or label. If a line# is specified, the
DATA statement in the specified line is read by the READ command. If a label is
specified, the DATA statement declared after the label is read.

If the line# and label are omitted, subsequent READ commands read the DATA
statement on the line with the smallest line number.

RESUME RESUME
(Command)

Action Ends an error processing routine and restarts the operation before the error oc-
curred.

Format RESUME [line# or label or 0 or NEXT]

Example RESUME 1500

Return operation to line 1500.

Description The RESUME command ends an error processing routine and returns operation
to the position where the error occurred. The RESUME command must be
executed within an error processing routine.

The line# or label specifies the jump destination after the error processing
routine execution is complete. Normally, a line# or label would be specified to
repeat the series of processes which led to the error. If the line# and label are
omitted or if 0 is specified, operation returns to the statement where the error
occurred.

If NEXT is specified, operation returns to the statement after the statement where
the error occurred.

RETURN RETURN
(Command)

Action Ends a subroutine and returns operation to the position where the subroutine
was called or to a specified line.

Format RETURN [line# or label]

Example RETURN

Returns operation to the line after the line where the subroutine was called.

RETURN Reference. . Section 4

143

Description The RETURN command ends a subroutine and returns operation to the position
where the subroutine was called (the line after the GOSUB command) or to a
specified line.

More than one RETURN command can be contained in a single subroutine.

The line# or label can be specified to force operation to jump to the specified
position. The specified line# or label must be identical to the label called with the
original GOSUB command. Correct operation cannot be guaranteed if the
specified line# or label differs from the label specified with the GOSUB com-
mand, due to the loss of the correlation between the GOSUB and RETURN com-
mands. Take care when executing a GOSUB command inside a FOR–NEXT
loop if GOSUB commands are nested.

RIGHT$ RIGHT$
(Function)

Action Extracts a character string with the specified length from the right end of the
specified character string.

Format RIGHT$ (character string, character string length)

Example B$=RIGHT$(”F300-OVL”,3)

Extracts 3 characters from the right end of character string “F300-OVL” and
assigns them to variable B$.

Description Extracts a character string of any length from the end of the specified character
string.

The character string can be specified as a character constant or character vari-
able. A null string (” ”) cannot be specified.

Specify the length of the extracted character string in bytes with the character
string length parameter as a value between 1 and the length of the character
string. A null string is returned if 0 is specified for the character string length. The
entire specified character string is returned if the character string length is
greater than the length of the specified character string.

RMDIR ReMove DIRectory
(Command)

Action Deletes a directory from the memory card.

Format RMDIR directory name

Example RMDIR ”BASIC”

Deletes the directory named BASIC from the current directory.

Description Specify the directory name as the name of a directory in the memory card with a
character string. An error occurs if the specified directory does not exist.

The directory specified with the directory name cannot be deleted if it contains
files. The files in the directory must be deleted with the KILL command before
using the RMDIR command.

Do not specify the current directory as the directory name parameter for the
RMDIR command. To delete the current directory, first use the CHDIR command
to change the current directory to another directory (normally one directory up
the hierarchy) before using the RMDIR command.

RMDIR Reference. . . Section 4

144

RMODE Runlength MODE
(Command)

Action Sets the measurement mode for detailed run length data.

Format RMODE binary image plane#, measured pixels [, [window function] [,
[direction] [, [noise] [, image cutout]]]]

Example RMODE 3,0,1,0

Sets measurement of black pixels for binary image plane 3, with the window
function on, X-direction measurement, no noise filtering, and image cutout
turned off.

Description The RMODE command sets the conditions for measurement of the detailed
runlength with the MEASURE command. Specify the binary image plane for
which the measurement conditions are set with the binary image plane# param-
eter.

Set the measured pixels parameter to set which pixels to measure, as follows:

0: Black pixels
1: White pixels

Set the window function to specify measurement in the window, as follows:

0: Measure the whole screen.
1: Measure in window only

Set the direction parameter to specify the measurement direction of the detailed
run length data, as follows:

0: X direction
1: Y direction

The default value is 0.

Measurement must be made in the X direction before measuring in the Y
direction.

Set the noise parameter to specify a number of pixels between 0 and 3 to ignore
as noise. This number or less of consecutive pixels is not considered as run
length data.

Set the image cutout to 1 to recognize all parts outside the window as part of the
run.

The RMODE command must be executed before the MEASURE command.

RND RaNDom
(Function)

Action Generates a random number between 0 and 1.

Format RND [(numeric expression)]

Example A=RND(1)

Assigns the next random number in the current random number sequence to
variable A%.

RND Reference Section 4

145

Description Returns a random number between 0 and 1. The random number is generated
with 1 as the random number seed until the seed is changed with the
RANDOMIZE command.

The returned random number depends on the specified numeric expression.
The meaning of the specified numeric expression is described in the table below.

Value Description

Negative value Returns the first random number from the current random number sequence.

0 Returns the previous random number in the current random number sequence.

Positive value or omitted Returns the next random number in the current random number sequence.

RSET Right SET
(Command)

Action Writes right-justified character data to a variable area defined with the FIELD
command.

Format RSET character variable = character string

Example RSET A$=”BASIC”

Right justifies the character string “BASIC” and writes it to the variable area
defined with the variable name A$.

Description Specify a character variable name defined with the FIELD command with the
character variable parameter.

Specify a character constant or character variable as the character string.

Excess characters are lost from the left of the character string if the length of the
specified character string exceeds the length of the character variable defined
with the FIELD command. Conversely, if the length of the specified character
string is less than the length of the character variable, the remaining positions
are filled with blanks.

RTRIM$ Right TRIM$
(Function)

Action Deletes spaces to the right of a character string.

Format RTRIM$ (character string)

Example A$=RTRIM$(”JAPAN ”)

Assigns “JAPAN” to variable A$.

Description Returns the character string (1- or 2-byte characters) with the spaces removed
from the right.

RUN RUN
(Command)

Action Runs a program.

Format Format 1: RUN [line#]
Format 2: filename [, R]

Example RUN ”PRO1”

Load and execute the program PRO1 on the memory card.

Description The command in Format 1 runs the program from the specified line#. The
program runs from the first line if the line# is omitted.

The command in Format 1 loads the program with the specified filename from
the memory card and runs if from the first line. If the R option is specified, files
previously opened for I/O are kept open.

The RUN signal turns ON when the RUN command is executed.

RUN Reference Section 4

146

RUNL RUN Length
(Function)

Action Reads the simple run length data.

Format RUNL (binary plane#, Y coordinate, measured data)

Example L=RUNL(2,128,0)

Assigns the simple runlength data from Y coordinate 128 of the binary image
plane 2 to variable L.

Description The RUNL command reads the simple run length data obtained for each binary
image plane with the MMODE command run function parameter set to 1. Set the
number of the binary image plane for which the data is required with the binary
plane# parameter.

Specify the Y coordinate of the run data to be read with the Y coordinate
parameter.

Specify the type of data to be read with the measure data parameter, as follows:

0: Run length
1: Start X coordinate
2: End X coordinate
3: Error data (The function returns –1 if more than one run exists.)

Set the MMODE command run function parameter set to 1 before using the
RUNL function.

SAVE SAVE
(Command)

Action Saves an OVL program from memory to the memory card.

Format SAVE filename [, P]

Example SAVE ”MYPROG”

Save the OVL program in memory with the filename MYPROG.BAS.

Description The SAVE command saves a program in memory in ASCII format to the file
specified with the filename in the memory card or RS-232C port. If the name of
an existing file is specified as the filename, the old contents of the file are de-
leted.

The file is coded if the P option is specified.

An error (Illegal function call) occurs if the LOAD, LIST, or EDIT command is
executed on a file saved using the P option. An error (Access denied) also oc-
curs if the OPEN command is executed on a file saved using the P option.

SBANK Shading memory BANK
(Command)

Action Selects the shading memory bank number.

Format SBANK (bank#)

Example SBANK 0

Switches to shading memory bank 0.

SBANK Reference. . . Section 4

147

Description The SBANK command switches to the shading memory bank 0 or 1 specified
with the bank#.

SCAN SCAN
(Command)

Action Conducts scan measurement of a binary image.

Format SCAN VRAM, [page#], [plane#], measured pixels [, [window function] [,
[NOISE], [, [X-coordinate compensation] [, [Y-coordinate compensation]]]]

Example SCAN 3,,5,0,0,,20,–15

Sets measurement of black pixels for binary image plane 5, with the window
function on, no noise filtering, +20 X coordinate compensation, and –15 Y
coordinate compensation.

Description The SCAN command conducts scan measurement of a binary image under the
conditions specified by the SCANSET command. Read the measured results
using the SDATA1 and SDATA2 functions.

Specify the VRAM to be scanned with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

The plane# is ignored if a plane VRAM is specified, but the plane# must be set if a
frame VRAM is specified.

Set the measured pixels parameter to 0 to measure black pixels or 1 to measure
white pixels.

Set the window function to 1 scan the specified region of the image or to 0 to scan
the entire screen. The default value is 1.

Set the noise parameter to specify a number of pixels between 0 and 3 to ignore
as noise. This number or less of consecutive pixels is not considered as scan
data. The default value is 0.

Specify the X-coordinate compensation or Y-coordinate compensation
parameter to a displacement offset value between –256 and 255. The default
value is 0.

SCANSET SCANSET
(Command)

Action Sets the conditions for scan measurement.

Format SCANSET shape, number of array data elements, X array, Y array

Example SCANSET 0,2,X,Y

Sets scan measurement around an ellipse.

Description The SCANSET commands sets the conditions for scan measurement.

Specify the shape of the series of pixels to be scanned with the shape
parameter, as follows:

0: Ellipse (including circle)
1: Polygonal line
2: Polygon

SCANSET Reference. Section 4

148

Define the scanned shape with the parameter arrays X array and Y array.

For an ellipse, specify the center coordinates and the X and Y half axes.

X array (0): X coordinate of center Y array (0): Y coordinate of center
X array (1): X axis half axis Y array (1): Y axis half axis

For non-ellipse shapes, specify X and Y coordinate series.

X array (0): X coordinate of point 0 Y array (0): Y coordinate of point 0
X array (1): X coordinate of point 1 Y array (1): Y coordinate of point 1
X array (2): X coordinate of point 2 Y array (2): Y coordinate of point 2
to
X array (n): X coordinate of point n Y array (n): Y coordinate of point n

Specify the qualifier (i.e., the number of data elements) in X array and Y array.

SCNCALIB SCeNe CALIBration
(Command)

Action Specifies the scene and camera# used for the measured value calibration data.

Format SCNCALIB scene#, camera#

Example SCNCALIB 0,3

Sets the scene 0, camera 3 data as the calibration data used to calculate the
calibrated data read with the MDATA function.
Specifies the camera# to be calibrated.

Description The SCNCALIB command sets the scene specified by the scene# and the
camera specified by the camera# as the data used for measurement calibration.

The SCNCALIB command is used to specify the scene calibration data set from
the menu mode, when calibrated data is read with the MDATA function.

Both the scene# and camera# are set to 0 when OVL is booted up.

SCNCAM SCeNe CAMera
(Function)

Action Reads the camera setting data for the specified scene and binary image plane#.

Format SCNCAM (scene#, binary image plane#, data type)

Example L=SCNCAM(3,4,0)

Assigns the camera number of scene 3, binary plane 4, to variable L.

Description The SCNCAM function reads the camera setting data for the binary image plane
specified by the binary image plane# in the scene specified by the scene#.

Specify the type of data to read with the data type parameter using a number, as
follows:

0: Camera number
1: Camera magnification
2: Camera angle in degrees

SCNLEVEL SCeNe LEVEL
(Function)

Action Determines the binary level data for a binary image plane of a specified scene.

Format SCNLEVEL (scene#, binary image plane#, data type)

Example L=SCNLEVEL(3,4,0)

Assigns the binary level (lower limit) of scene 3, binary plane 4, to variable L.

SCNLEVEL Reference Section 4

149

Description The SCNLEVEL function reads the binary level data for the binary image plane
specified by the binary image plane# in the scene specified by the scene#.

Specify the type of binary level data to read with the data type parameter using a
number, as follows:

0: Binary level (lower limit)
1: Binary level (upper limit)

SCNLOAD SCeNe LOAD
(Command)

Action Loads the scene measuring condition from a file.

Format SCNLOAD file name , scene#

Example SCNLOAD ”file”

Load the data from the file named “ file” in the memory card as the scene data for
scene 0.

Description The SCNLOAD command loads the data from the file specified with the file
name parameter as scene data and stores it as the measuring conditions for the
scene specified by the scene#.

Scene data can be loaded with the SCNLOAD function only from a file saved
with the SCNSAVE command or saved in the menu mode.

SCNLUT SCeNe LUT
(Command)

Action Sets the binary level of all binary planes in the specified scene to the binary LUT.

Format SCNLUT scene#

Example SCNLUT 6

Sets the binary level of all binary planes in the scene #6 to the binary LUT.

Description The SCNLUT command batch sets the binary level of all binary planes in the
scene specified with the scene# to the binary LUT.

SCNSAVE SCeNe SAVE
(Command)

Action Saves the scene measuring condition data to a file.

Format SCNSAVE file name, scene#

Example SCNSAVE ”file”,0

Saves the scene data for scene 0 to the file named “ file” in the memory card.

Description The SCNSAVE command saves the scene data specified with the scene#
parameter to the file specified by the file name.

SDATA1 Scan DATA1
(Function)

Action Reads the scan measurement data statistics.

Format SDATA1 (data type)

Example ED=SDATA1(2)

Assigns the maximum scan length measured by the SCAN command to variable
ED.

SDATA1 Reference. . . Section 4

150

Description The SDATA1 function reads the scan measurement data statistics measured
with the SCAN command. All values are returned in units of pixels.

Specify the statistic required with the data type parameter using one of the
following numbers:

0: Number of scans
1: Average scan length
2: Maximum scan length
3: Minimum scan length
4: Median scan length
5: Scan number with the maximum length
6: Scan number with the minimum length
7: Scan number with the median length

SDATA2 Scan DATA2
(Function)

Action Reads the individual scan data measurement items.

Format SDATA2 (scan#, data type)

Example ED=SDATA2(2,2)

Assigns the start point Y coordinate to variable ED.

Description The SDATA2 function reads the individual scan data measurement items of the
specified scan# measured with the SCAN command. All values are returned in
units of pixels.

Specify the date item.

0: Scan length
1: Start point X coordinate
2: Start point Y coordinate
3: End point X coordinate
4: End point Y coordinate
5: Length from scan origin to start point
6: Length from scan origin to end point

SEARCH SEARCH
(Function)

Action Searches for an integer in an integer array and determines the number of the
array element where the integer is found.

Format SEARCH (integer array name, value to find [, [start element#] [, increment]])

Example S%=SEARCH(TE%,60)

Searches for the integer 60 in the integer array (100) and assigns the number of
the first element where the integer 60 is stored to variable S%.

Description The SEARCH function finds the specified value in the integer array and returns
the the number of the array element where the value is found as an integer. –1 is
returned if the specified value is not found in the array.

Specify the integer array name as the name of an array variable defined as a
one-dimensional array with the DIM command. Only one-dimensional array
variables may be specified.

Specify the integer to be found with the value to find parameter. To find a single-
or double-precision integer value, first convert the value to an integer.

Specify the number of array element to start the search with the start element#
parameter. Specify any value between the minimum and maximum qualifier val-

SEARCH Reference. . Section 4

151

ue. The search starts from the start of the array variable if this parameter is
omitted. The minimum qualifier value is declared with the OPTION BASE com-
mand.

Specify the increment as a positive integer. The increment sets the counter
between the searched array elements. The increment is added to the number of
a searched element to determine the number of the next element to search. In-
termediate elements are not searched. The default value is 1 if the parameter is
omitted and all elements after the start element# are searched.

SELECT...CASE–CASE ELSE–END SELECT
SELECT...CASE–CASE ELSE–END SELECT
(Command)

Action Provides multiple branching depending on the result of a conditional expression.

Format SELECT expression

[CASE item [, item...]
Statement in CASE block

CASE ELSE
Statement in CASE ELSE block]

END SELECT

Example SELECT A
CASE 0

PRINT ”ZERO”
CASE 1,3,5,9

PRINT ”ODD”
CASE 2,4,6,8,

PRINT ”EVEN”
END SELECT

Branches program execution depending on the value of variable A.

Description The SELECT command branches program execution depending on the value of
the specified expression.

The expression can be defined as a numeric or character expression. The pro-
gram branches as defined when the value of the expression matches the speci-
fied CASE value.

Multiple CASE statements may be defined. The CASE and CASE ELSE state-
ment may be omitted.

The END SELECT statement is required; it must not be omitted.

If more than one CASE statement matches the result of the expression, the first
of the CASE statements is executed.

Do not use the GOTO command to jump into or out of the SELECT block.

SET SET
(Command)

Action Sets the write-protect attribute for a file.

Format SET filename or file#, attribute character

Example SET ”FILE”, ”P”
Write protect the file named FILE.

SET #1, ” ”
Write enable file #1.

SET Reference Section 4

152

Description Sets the write-protect attribute (write protect or write enable) with the attribute
character for the file specified with the filename or file#. The attribute is applied to
the specified file only. Other files in the memory card remain unchanged.

Specify the filename parameter as the name of an existing file with a character
string. After the write-protect attribute is set for a file specified with a filename it
remains unchanged until cancelled with the SET command.

Specify the file# as the number in which the file was opened with the OPEN com-
mand. This attribute is maintained only while the file is open.

Specify the attribute character as either P or a null string or single space. Other
characters cause an error. The key to the attribute characters is shown in the
table below.

Attribute character Attribute setting

“P” Writing disabled to the file specified with the filename of file#. No data output to the file with file
output commands (PRINT#/PUT#/WRITE#).

Null string or single
space

Cancels write protection for the file specified with the filename of file# to enable data to be
written to the file.

SETBLUT SET Binary LUT
(Command)

Action Sets array data as binary LUT data.

Format SETBLUT binary image plane#, array name [, [qualifier] [, size]]

Example SETBLUT 2,A

Set the 256 array elements from the start of array A as binary LUT.

Description The SETBLUT command sets the array specified by the array name as the
binary LUT data for the specified binary image plane#.

The qualifier specifies the first array element to be set as the binary LUT data.
The default value is 0.

The size parameter specifies the number of array elements, as follows:

0: 256
1: 512

The default value is 0.

The array data corresponds to the binary LUT data, as follows:

0: 0 set to the LUT
non-0: 1 set to the LUT

SETDLUT SET Display LUT
(Command)

Action Sets an array variable in the display LUT.

Format SETDLUT region, array name, [, qualifier]

Example SETDLUT 1,A

Sets 256 elements of array A as the display LUT for inside the window.

Description The SETDLUT command sets the values in the array variable specified by the
array name as the display LUT data.

Separate display LUTs are provided for inside and outside the window. Specify
the display LUT for inside or outside the window with the region, parameter. En-
ter 0 to set the display LUT for outside the window or 1 for inside the window.

SETDLUT Reference. Section 4

153

The qualifier specifies the first array element to be set as the display LUT. The
default value is 0.

SETDLVL SET Display LeVeL
(Command)

Action Sets the display level for each display image.

Format SETDLVL image type [, gradation]

Example SETDLVL 1,20

Set the graphic memory display level to 20.

Description The SETDLVL command sets the display brightness for the image specified with
the image type parameter.

0: Character memory
1: Graphic memory
2: Mask image
3: Binary image, white
4: Binary image, black
5: Window memory increment
6: Paint/pattern matching window memory increment

Set the required display level with the gradation parameter. If omitted, the setting
reverts to the setting at OVL boot-up.

SETLUT SET LUT
(Command)

Action Sets array data as the filter LUT data.

Format SETLUT array name, [, [qualifier] [, size]]

Example SETLUT A

Sets 256 elements of array A as the filter LUT.

Description The SETLUT command sets the array data variable specified by the array name
as the filter LUT data.

The qualifier specifies the first array element to be set as the filter LUT data. The
default value is 0.

The size parameter specifies the number of array elements, as follows:

0: 256
1: 512

The default value is 0.

SFTBLUT ShiFT Binary LUT
(Command)

Action Shifts the binary LUT contents for each binary image plane.

Format SFTBLUT binary image plane#, shift

Example SFTBLUT 1,–12

Shifts the binary LUT for binary image plane# 1 by –12.

Description The SFTBLUT command shifts the contents of the binary LUT for the specified
binary image plane# by the amount specified with the shift parameter.

The shift operation with positive and negative shift parameters is shown below.

SFTBLUT Reference. Section 4

154

Before shifting:

Output
image
gradation

Input image gradation

1

0

–256 0 255

Positive shift:

Output
image
gradation

Input image gradation

1

0

–256 0 255

Negative shift:

Output
image
gradation

Input image gradation

1

0

–256 0 255

SFTLUT ShiFT LUT
(Command)

Action Shifts the filter LUT.

Format SFTLUT shift

Example SFTLUT –12

Shifts the filter LUT by –12.

Description The SFTLUT command shifts the contents of the filter LUT by the amount
specified with the shift parameter.

The shift operation with positive and negative shift parameters is shown below.

Before shifting:

Output
image
gradation

Input image gradation

255

0

–256 0 255

SFTLUT Reference. . Section 4

155

Positive shift:

Output
image
gradation

Input image gradation

255

0

–256 0 255

Negative shift:

Output
image
gradation

Input image gradation

255

0

–256 0 255

SGN SiGN
(Function)

Action Determines the positive or negative sign of a numeric expression.

Format SGN (numeric expression)

Example A=SGN(–35)

Assigns –1 to variable A to indicate that the numeric expression –35 is negative.

Description The SGN function returns a value (–1, 0, 1) to indicate the sign of the numeric
expression. The relationship between the sign of the numeric expression and
returned value is shown below.

Numeric expression Returned value

Positive 1

0 0

Negative –1

SIN SINe
(Function)

Action Determines the sine of a numeric expression.

Format SIN (numeric expression)

Example A=SIN(30*3.14159/180)

Assigns the sine of 305 to variable A.

Description The SIN function returns a value between –1 and +1. The numeric expression
must be set in radians. Convert an angle in degrees to radians by multiplying by
π/180.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The SIN function always returns a double-pre-
cision real number.

SIN Reference. Section 4

156

SPACE$ SPACE$
(Function)

Action Creates a character string comprised of the number of spaces specified by the
numeric expression.

Format SPACE$ (numeric expression)

Example A$=SPACE$(3)

Creates a character string containing 3 space characters and assigns it to
variable A$.

Description The SPACE$ function returns a character string containing the number of space
characters (CHR$(32)) specified by the numeric expression.

Specify the numeric expression as a value between 0 and 255.

The STRING$ function is similar to the SPACE$ function. In the following
examples, the STRING$ and SPACE$ functions return the same character
string.

A$=SPACE$(10) assigns 10 spaces to variable A$
A$=STRING$(10, 32) assigns 10 spaces (CHR$(32)) to variable A$

SPC SPaCe
(Function)

Action Outputs the specified number of spaces.

Format SPC (numeric expression)

Example PRINT ”OMRON”;SPC(10);”F300”

”OMRON” and ”F300” are displayed on the screen separated by 10 spaces.

Description The SPC function creates a character string containing the number of spaces
specified by the numeric expression. The SPC function cannot be used alone.
Use it together with the PRINT command.

Specify the numeric expression as an integer between –32768 (–215) and
32767 (215–1). A negative numeric expression (–215 to –1) is treated as 0. If the
designated characters do not fit in one line, the remainder obtained by dividing
the number of the designated characters by the number of characters fitting in
one line shall be used as the set value. An example is seen in the following.

PRINT ”A”; SPC (520); ”B”
A________B

512 characters

PRINT “A”; SPC (520); “B”

The number of characters in one line is 512.

520/512 = 1 (the remainder is 8)

The screen output is as follows:

A________B (8 spaces between A and B)

SPC Reference Section 4

157

SPCLOSE SPline CLOSE
(Command)

Action Draws a region bounded by a spline curve in VRAM.

Format SPCLOSE number of data, X array, Y array, VRAM, [, [page#] [, [density or
drawing mode] [, lineart]]]

Example SPCLOSE 28,XD,YD,3,,128,0

Draws a region in image memory with drawing density 128 bounded by a spline
curve defined by the 28 coordinate points contained in arrays XD and YD.

Description The SPCLOSE command draws a region bounded by a spline curve. The spline
curve is defined by the coordinate points in X array and Y array between the first
array element and the element defined by the number of data parameter.

The number of data must not exceed 64.

Specify the VRAM where the region is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

Specify with the lineart parameter if the spline curve is an outline only or filled.
0: Filled spline curve
1: Spline curve outline only
The default value is 0.

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

SPLINE SPLINE
(Command)

Action Draws a spline curve in VRAM.

Format SPLINE number of data, X array, Y array, VRAM, [, [page#] [, [density or
drawing mode]

Example SPLINE 28,XD,YD,3,,128

Draws a spline curve in image memory defined by the 28 coordinate points
contained in arrays XD and YD with drawing density 128.

Description The SPLINE command draws a spline curve defined by the coordinate points in
X array and Y array between the first array element and the element defined by
the number of data parameter.

The number of data must not exceed 64.

Specify the VRAM where the spline curve is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

SPLINE Reference. . . Section 4

158

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

SQR SQuare Root
(Function)

Action Determines the square-root of a numeric expression.

Format SQR (numeric expression)

Example A=SQR(100)

Assigns 10, the square root of 100, to variable A.

Description The SQR function determines the square-root of the specified numeric expres-
sion. The numeric expression must be 0 or a positive value.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The SQR function always returns a double-
precision real number.

SSCROLL Shading memory SCROLL
(Command)

Action Scrolls the shading master memory.

Format SSCROLL X, Y [, center of rotation X, center of rotation Y, angle of rotation]

Example SSCROLL 50,100,256,256,30

Rotates the shading master memory 30% clockwise about the coordinates (256,
256) and scrolls it 50 pixels in the X direction and 100 pixels in the Y direction.

Description The SSCROLL command scrolls the shading master memory in the X, Y, and θ
directions.

Specify the amount of scroll in the X direction with the X parameter and the
amount of scroll in the Y direction with the Y parameter. Specify the scroll
amounts as a number of pixels between –1024 and +1023.

Specify the amount of rotational scroll in degrees with the angle of rotation
parameter and the coordinates of the center of rotation with center of rotation X
and center of rotation Y. No rotation occurs if these parameters are omitted.
Specify the center of rotation X and center of rotation Y as a number of pixels
between –1024 and +1023.

Scrolling is completed in the order: rotation, X, Y.

STOP STOP
(Command)

Action Stops program execution.

Format STOP

Example IF A$=”ST” THEN STOP

Stops program execution if A$ = “ST”.

STOP Reference Section 4

159

Description The STOP command stops program execution. It can be used anywhere inside
the program.

STOP ON/OFF/STOP STOP key ON/OFF/STOP
(Command)

Action Disables, enables, or stops interrupts from the STOP Key.

Format STOP ON or OFF or STOP

Example STOP OFF

Disables branching to the interrupt processing routine when the STOP Key is
pressed.

Description The STOP command controls branching to an interrupt processing routine when
the STOP Key is pressed.

STOP ON: The STOP ON statement enables the interrupt processing routine when the
STOP Key is pressed. When the STOP Key is pressed, operation branches to
the interrupt processing routine at the line# or label defined with the ON STOP
GOSUB statement.

STOP OFF: The STOP OFF statement disables the interrupt processing routine when the
STOP Key is pressed. When the STOP Key is pressed, program operation stops
but does not branch to an interrupt processing routine.

STOP STOP: The STOP STOP statement stops interrupt processing when the STOP Key is
pressed. When the STOP Key is pressed, operation does not immediately
branch to the interrupt processing routine. However, immediately branching is
enabled by the STOP ON statement, operation branches to the interrupt
processing routine at the line# or label defined with the ON STOP GOSUB
statement.

Note that if the STOP OFF/STOP command is used the STOP Key does not
function as normal to stop program execution.

The interrupt subroutine must be defined with the ON STOP GOSUB statement
before a STOP ON/OFF/STOP command is executed.

STR$ STRing$
(Function)

Action Converts a number to character string representation.

Format STR$ (numeric expression)

Example A$=STR$(5692)

Converts the value 5692 to a character string and assigns it to variable A$.

Description The STR$ function converts the numeric expression to a character string. A
numeric expression cannot be directly assigned to a character variable. First
convert the numeric expression with the STR$ function before assigning it to a
character variable.

The first character in the character string is a space if the numeric expression is
positive. The space is replaced by a minus sign if the numeric expression is neg-
ative.

The VAL function has the opposite action to the STR$ function.

STR$ Reference Section 4

160

STRCHK STRobe CHecK
(Function)

Action Checks for incorrect strobe flashing.

Format STRCHK

Example D=STRCHK

Assigns the result of the strobe check to variable D.

Description The STRCHK function checks for incorrect strobe flashing. The function returns
a number as follows:

0: Normal strobe flash
non-0: No strobe flash or disconnected strobe cable.

The bit position corresponds to the strobe number.

STRING$ STRING$
(Function)

Action Creates a character string containing the specified number of the specified
character.

Format STRING$ (number of characters, character string or numeric expression 2)

Example A$=STRING$(10,”*”)

Assigns a character string containing 10 asterisks to variable A$.

Description The STRING$ function returns a character string containing the number of
specified 1-byte characters specified by the numeric expression. 2-byte
characters may not be specified.

Specify the number of characters as a value between 1 and 255.

Specify the character to fill the character string with the character string or nu-
meric expression 2 parameter.

Specifying character string:

Specify the character string as a single 1-byte character.

Only the leading character is valid if more than one character string is speci-
fied. The STRING$ function returns a character string filled with the leading
character.

Specifying numeric expression 2:

Specify the numeric expression 2 as the decimal character code for a 1-byte
character as an integer between 0 and 255.

The SPACE$ function is similar to the STRING$ function. In the following
examples, the STRING$ and SPACE$ functions return the same character
string.

A$=STRING$(10, 32) assigns 10 spaces (CHR$(32)) to variable A$
A$=SPACE$(10) assigns 10 spaces to variable A$

STRMODE STRobe MODE
(Command)

Action Enables and disables strobe flashing on the FLASH command.

Format STRMODE strobe#, switch

Example STRMODE 1,1

Strobe 1 flashes when the FLASH command is executed.

STRMODE Reference Section 4

161

Description The STRMODE command enables and disables strobe flashing when the
FLASH command is executed.

Specify the number of the strobe as a value between 0 and 7 with the strobe#
parameter. Set strobe# to –1 to specify all the strobes. The specified strobe
flashes when the FLASH command is executed if the switch parameter is set to
1. Set the switch parameter is set to 0 to disable the strobe flashing.

All strobes enabled with the STRMODE command flash simultaneously when
the FLASH command is executed.

SUB–END SUB SUB–END SUB
(Command)

Action Defines a structural subroutine called by the CALL command.

Format SUB label (argument [, argument...])

Statement in SUB block

END SUB

Example SUB *SUB1(A$,B%,C#)
B$ = A$ + ”OMRON”

END SUB

Defines the label *SUB1 as a structural subroutine.

Description The block between SUB–END SUB defines the structural subroutine called by
the CALL command.

All variables used in a subroutine are treated as local variables. The variables
specified by the arguments are assigned the values of the local variables after
execution of the subroutine.

The label defines the name of the subroutine. This name is used to call the
subroutine with the CALL command.

The arguments can be specified as any type of variables, except array variables.
No logical limitation is placed on the number of arguments. However, the com-
mand line can physically accommodate up to 255 characters only.

No further SUB–END SUB command may be nested inside a subroutine block.

Statements in subprogram blocks must be located after the main program.

SWAP SWAP
(Command)

Action Switches two variables.

Format SWAP variable 1, variable 2

Example SWAP A#,B#

Switches the values of variables A# and B#.

Description The SWAP command switches the contents of variable 1 and variable 2. Both
variables must be of the same type.

TAB TABulate
(Function)

Action Specifies the position to display characters.

Format TAB (numeric expression)

Example PRINT ”1234567”;TAB(10);”XYZ”

Displays “1234567” from the left-hand character position (character 0) and
“XYZ” from the character 10 position.

TAB Reference Section 4

162

Description The TAB function moves the cursor along a line by the specified number of
characters from the left-hand position. If the character position specified by the
numeric expression is less than the current cursor position, the cursor moves to
the specified character position on the next line.

The TAB function cannot be used alone. Use it together with the PRINT com-
mand.

A negative numeric expression is treated as 0. If a positive numeric expression is
specified which exceeds the number of character in a line, the number of
characters in a line is subtracted from the specified numeric expression to
determine the cursor position.

The differences between the TAB function and the similar SPC function are
shown in the following table.

TAB function SPC function

Spaces Outputs the number of spaces determined by
subtracting the number of previously output
characters from the numeric expression.

Outputs the number of spaces specified by the
numeric-expression from the current cursor
position.

Line feed Cursor moves to the next line if the character
position specified by the numeric expression is less
than the current cursor position.

No line feed.

TAN TANgent
(Function)

Action Determines the tangent of a numeric expression.

Format TAN (numeric expression)

Example A=TAN(45*3.14159/180)

Assigns the tangent of 45% to variable A.

Description The TAN function returns an integer between –1.701411834604692D+38 and
+1.701411834604692D+38. The numeric expression must be set in radians.
Convert an angle in degrees to radians by multiplying by π/180.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The TAN function always returns a double-pre-
cision real number.

TIME$ TIME$
(Function, Command)

Action Displays and sets the time in the internal clock.

Format Format 1: TIME$
Format 2: TIME$=”HH:MM:SS”

Example CLOCK$=TIME$

Assigns the time returned in TIME$ to the character variable CLOCK$.

Description Format 1

Reads the time from the F300.

TIME$ Reference. . . . Section 4

163

A character string in the format HH:MM:SS is returned when the TIME$
function is executed.

HH:MM:SS

Seconds: 2 characters between 00 and 59

Minutes: 2 characters between 00 and 59

Hours: 2 characters between 00 and 23

The clock is set to 00:00:00 when the F300 power supply is turned on.

Format 2

Sets the F300 clock:

Set the hours between 00 and 23 with 2 characters.

Set the minutes between 00 and 59 with 2 characters.

Set the seconds between 00 and 59 with 2 characters.

The time must be in the format HH:MM:SS. No part can be omitted.

TIME$ ON/OFF/STOP TIME$ ON/OFF/STOP
(Command)

Action Disables, enables, or stops timer interrupts.

Format TIME$ ON or OFF or STOP

Example TIME$ ON

Enables branching to the interrupt processing routine due to the timer.

Description The TIME$ command controls branching to an interrupt processing routine due
to the timer.

TIME$ ON: The TIME$ ON statement enables the interrupt processing routine on timer op-
eration. When timer set with the ON TIME$ GOSUB command is reached,
operation branches to the interrupt processing routine at the line# or label
defined with the ON TIME$ GOSUB statement.

TIME$ OFF: The TIME$ OFF statement disables the interrupt processing routine on timer op-
eration. All timer interrupts are ignored.

TIME$ STOP: The TIME$ STOP statement stops interrupt processing on timer operation.
When the set time is reached, operation does not immediately branch to the
interrupt processing routine. However, immediately branching is enabled by the
TIME$ ON statement, operation branches to the interrupt processing routine at
the line# or label defined with the ON TIME$ GOSUB statement.

TIMER TIMER
(Function, Command)

Action Reads and sets the 10 ms timer.

Format Format 1: TIMER
Format 2: TIMER = numeric expression

Example T&=TIMER

Assigns the 10 ms timer PV to variable T&.

Description Format 1

Reads the 10 ms timer PV. The timer PV is 0 when the power is turned on and
increases by 1 every 10 ms.

TIMER Reference. . . . Section 4

164

Format 2

Sets the 10 ms timer to the value between 0 and 2147483647. specified with the
numeric expression.

TROFF TRace OFF
(Command)

Action Exits the Trace mode.

Format TROFF
Example TROFF

Cancels the Trace mode.

Description The TROFF command cancels the Trace mode.

The Trace mode is cancelled by the TROFF command only. It is not cancelled
when a program is executed, completed, interrupted, or re-executed.

TRON TRace ON
(Command)

Action Enters the Trace mode.

Format TRON
Example TRON

Enters the Trace mode.

Description The TRON command enters the Trace mode.

When a program is executed in the Trace mode, the line numbers are displayed
continuously on the screen as an aid to debugging.

Displays from the program are unchanged in the Trace mode. However,
program outputs become mixed with the line numbers. The Trace mode is
cancelled by the TROFF command only. It is not cancelled when a program is
executed, completed, interrupted, or re-executed.

UBOUND Upper BOUND
(Function)

Action Determines the upper boundary of an array dimension qualifier.

Format UBOUND (array name [, number of dimensions])

Example I=UBOUND(A,1)

Assigns the upper limit of the qualifier of the 1-dimensional array A to variable I.

Description The UBOUND function returns the upper boundary of an array dimension
qualifier.

Specify the name of the array for which the qualifier is to be determined with the
array name parameter.

Specify the number of dimensions of the array with the number of dimensions
parameter. The default value is 1.

UCASE$ Upper CASE $
(Function)

Action Converts lowercase letters in the character string to uppercase letters.

Format UCASE$ (character string)

Example A$=UCASE$(B$)

Converts all lowercase letters in the character string B$ to uppercase letters and
assigns the new character string to variable A$.

UCASE$ Reference. . Section 4

165

Description The UCASE$ function converts lowercase letters in the character string to up-
percase letters. Existing uppercase letters remain unchanged.

VAL VALue
(Function)

Action Converts a number represented as a character string to a number.

Format VAL (character string)

Example A=VAL(”10”)

Converts the character string “10” to the number 10 and assigns it to variable A.

Description The VAL function converts the character string to a real number.

The character string must be specified as a character variable or character
constant starting with +, –, & or a digit between 0 and 9. The VAL function returns
0 if the character string does not conform to this format.

If the character string contains a character which cannot be converted to a
number, the characters before the unconvertable character are converted.
Spaces in the character string are ignored and the positions of the spaces are
closed in the returned number.

The STR$ function has the opposite action to the VAL function.

VDWAIT VD WAIT
(Command)

Action Delays the VD interrupt the specified number of times.

Format VDWAIT number of times

Example VDWAIT 3

Delays the VD interrupt processing by 3 VD interrupts (approx. 50 ms).

Description The VDWAIT command counts the number of VD interrupts and delays VD
interrupt processing the specified number of VD interrupts. Each VD interrupt is
equivalent to 1/60 second (approx. 16.7 ms).

Program operation cannot be interrupted with the STOP Key or CNTRL+C Keys
during VDWAIT operation.

VIDEOIN VIDEO IN
(Command)

Action Inputs an image to the image memory.

Format VIDEOIN [page#] [, input path]

Example VIDEOIN 0,0

Input the image from image bus 1 to the image memory.

Description The VIDEOIN command reads image data to the image memory. This command
is used to store an image before carrying out multiple measurements on the
same image.

Omit the page# or set to 0.

Input the path from which the image is loaded with a number, as follows:

0: image bus 1
1: image bus 0

The default value is 0.

VIDEOIN Reference. Section 4

166

The image input timing in each input mode is shown below.

1 field
(1/60 s)

VIDEOIN executed

Image input interval

Image input from image bus 0 is disabled while the image memory contents are
displayed.

WDISP Window DISPlay
(Command)

Action Sets the type of image display in a window.

Format WDISP window plane#, image type [, [display or not] [, binary reverse]]

Example WDISP 2,1,1

Display the binary image plane#2 window plane and set a binary image in the
window.

Description The WDISP command sets the type of image display inside the window plane
specified by the window plane#. Set window plane# to –1 to specify all window
planes.

Set the image type to 0 to display the same image type inside the window as
outside the window. Specify 1 to display a binary image in the window.

Specify whether the window itself is displayed with the display or not item. Set to
1 to display the window or to 0 to hide the window. The default value is 0. If
window display is selected, the window gradations are increased, or made light-
er, to display the window.

Set the binary reverse parameter to 1 to reverse the displayed image or to 0 for a
normal displayed image. The default value is 0. The binary reverse setting is
valid only when the image type is set to 1 (binary image).

WHILE–WEND WHILE–While END
(Command)

Action The commands between the WHILE and WEND statements are executed
repeatedly while a condition remains fulfilled.

Format WHILE logical expression

WEND

Example 100 WHILE KAI<10

200 WEND

Executed the lines from 100 to 200 repeatedly while the value assigned to
variable KAI is less than 10.

WHILE–WEND Reference. . Section 4

167

Description The commands between the WHILE and WEND statements (WHILE–WEND
loop) are executed repeatedly while the logical expression remains true (non-0).

The logical expression declared with the WHILE statement provides the
condition for the commands to be executed. The WHILE–WEND loop is
executed repeatedly while the logical expression remains true (non-0). Control
is transferred to the line after the WEND statement when the logical expression
becomes false (0).

The WHILE–WEND loop is not executed if the logical expression is initially false
(0). Control jumps immediately to the line after the WEND statement. Other
WHILE–WEND loops may be nested inside a WHILE–WEND loop. The nested
WHILE–WEND loops must have a one-to-one correspondence between the
WHILE and WHEN statements from the inside of the nested loops toward the
outside. WEND statements must not be omitted.

WINDOW WINDOW
(Command)

Action Draws the window set for the specified scene to the window memory.

Format WINDOW scene#

Example WINDOW 3

Draws the window set for scene #3.

Description The WINDOW command refers to the window data previously set in the Menu
mode. It draws the window data for all windows for the scene (0 to 15) specified
with the scene# parameter. The previous window memory contents are deleted.

To draw a complex window, it is convenient to set the window while looking at the
workpiece in the Menu mode before executing the WINDOW command.

WRITE WRITE
(Command)

Action Displays data on the display.

Format WRITE expression list [{, or ;} expression]

Example WRITE A$,B

Writes the data defined in variables A$ and B to the text display.

Description Displays the numeric data and character data specified with the expression list
on the text display.

List the numeric and character expressions in the expression list delimited by
commas (,) or semicolons (;). Commas (,) or semicolons (;) are identical in func-
tion. If the expressions in the expression list are delimited by commas (,), the
data items are displayed on the screen separated by commas (,). A character
string is displayed enclosed in double-quotations (“ ”).

If a numeric expression is specified, spaces in front of the data are deleted on the
display.

A carriage return character is inserted automatically after all the expressions are
displayed.

The PRINT command is similar to the WRITE command but differs as follows:

• comma (,) and semicolon (;) delimiter characters differ in function
• no commas (,) displayed between data items on the screen
• double-quotations (”) not displayed

WRITE Reference. . . . Section 4

168

• spaces in front of numeric data are displayed.

WRITE # WRITE #
(Command)

Action Writes data to a sequential file.

Format WRITE # file#, expression list [{, or ;} expression]

Example WRITE #1,J,K,A$

Concatenates the numeric data and character data defined with the expressions
J (numeric), K (numeric), and A$ (character) and writes it to file #1.

Description Specify the file# as the number in which the output file was opened with the
OPEN command. Specify the same file# with the CLOSE command to close the
file after output is complete.

List the numeric and character expressions in the expression list delimited by
commas (,) or semicolons (;). Commas (,) or semicolons (;) are identical in func-
tion. If the expressions in the expression list are delimited by commas (,), the
data items are written to the file separated by commas (,).

A character string is automatically enclosed in double-quotations (”) when
written to a file.

If a numeric expression is specified, spaces in front of the data are deleted when
the data is written to the file. Consequently, the file area used is less than with the
PRINT# command which writes leading spaces to the file.

The WRITE# command automatically inserts a linefeed character (CHR$(10))
after writing the last expression to the file.

The PRINT# command is similar to the WRITE# command but differs as follows:

• comma (,) and semicolon (;) delimiters differ in function.
• commas (,) and double quotations (”) are not automatically inserted.
• spaces in front of numeric data are also written to a file.

WSCROLL Window SCROLL
(Command)

Action Scrolls the window memory.

Format WSCROLL X, Y [, center of rotation X, center of rotation Y, angle of rotation]

Example WSCROLL 50,100,256,256,30

Rotates the window memory 30% clockwise about the coordinates (256, 256)
and scrolls it 50 pixels in the X direction and 100 pixels in the Y direction.

Description The WSCROLL command scrolls the window memory in the X, Y, and θ direc-
tions.

Specify the amount of scroll in the X direction with the X parameter and the
amount of scroll in the Y direction with the Y parameter. Specify the scroll
amounts as a number of pixels between –1023 and +1023.

Specify the amount of rotational scroll in degrees with the angle of rotation
parameter and the coordinates of the center of rotation with center of rotation X
and center of rotation Y. No rotation occurs if these parameters are omitted.
Specify the center of rotation X and center of rotation Y as a number of pixels
between –1023 and +1023.

Scrolling is completed in the order: rotation, X, Y.

WSCROLL Reference. Section 4

169

PART II
Version 2.00

SECTION 1
OVL Version 2.00 Improvements

This section describes the additional functions and improvements found in OVL Version 2.00.

1-1 Overview of Improvements 170.
1-1-1 Summary of Additional OVL Capabilities 170.
1-1-2 Alphabetical Listing of New Functions & Commands 171.
1-1-3 Changes in Specifications 172.
1-1-4 Increased Processing Speed 172.

1-2 Additional OVL Capabilities 172.
1-2-1 Multiple-window Functions 172.
1-2-2 Window Enlargement/Reduction 174.
1-2-3 Binary Image Processing 174.
1-2-4 Raw Image Processing 175.
1-2-5 Image-to-image Calculations 175.
1-2-6 High-speed Array Operations 175.
1-2-7 Renumbering Labels 176.
1-2-8 Zooming Window & Shading Memory 176.
1-2-9 Filtering Selection 177.
1-2-10 Checking Menu Settings 177.
1-2-11 Calculations using Simple Run Length 179.
1-2-12 BCD/Binary Conversion 180.
1-2-13 Console Key Interrupts 180.
1-2-14 Memory Card Operations 180.
1-2-15 Camera Synchronization 181.
1-2-16 System Information 181.
1-2-17 Standard I/O Settings 181.
1-2-18 Loading/Saving Programs through RS-232C 181.
1-2-19 Binary Level Setting Range 182.

170

1-1 Overview of Improvements

1-1-1 Summary of Additional OVL Capabilities
The following capabilities have been added for Version 2.00. These improve-
ments are described in detail in PART II 1-2 Additional OVL Capabilities.

Multiple Window Functions The area, center of gravity, and axis angle can be calculated quickly with 9 or
more windows.

Window size can be enlarged and reduced to check for omission or blurring of
characters.

Binary Image Processing Binary image processing such as edge detection, changing line thickness,
zooming, elimination of isolated points, filling in holes, and elimination of sur-
rounding graphics can be performed.

Raw image processing such as Sobel processing and 3×3 mask processing can
be performed.

Image-to-image Calculations Image-to-image calculations can be performed on binary and raw images.

A single command can be used to perform high-speed operations between
array variables.

Renumbering Labels Labels can be renumbered based on the windows’ center of gravity or location
on the screen.

Window memory and shading memory can be enlarged and reduced. It is pos-
sible to switch quickly between several windows for measurements.

Filtering Selection Previously, image filtering functions could only be set in the menu. These func-
tions can now be selected in OVL as well.

Obtain Menu Settings The criteria and reference image data set in the menu can now be obtained from
OVL.

A variety of measurements can be made based on the simple run length. This
function can be used for quickly measuring dimensions, counting the number of
IC pins, etc.

BCD/Binary Conversion Two functions have been added to convert numerical values between BCD and
binary. These functions are useful when outputting data from Parallel I/O Units
or Terminal Block Units.

Console Key Interrupts Several commands have been added to control Console key interrupts and de-
fine interrupt routines.

Memory Card Operations The Memory Card can be formatted and the Memory Card’s battery voltage can
be checked from OVL.

Camera Synchronization A command has been added that selects the method of camera synchronization
(internal or external).

System Information A new function has been added that displays the model and version of the sys-
tem. This function can be used to ensure compatibility when writing programs.

Standard I/O Settings Instructions can be input through the RS-232C port instead of a keyboard, and
the video monitor output can be output to the RS-232C port, so an OVL program
can be developed without a keyboard.

The $1A code at the end of files is now recognized when loading or saving pro-
grams through the RS-232C port using LOAD” COM:” or SAVE” COM:”.

The binary level range has been doubled, so the maximum binary level setting is
now 511 rather than 255.

Window
Enlargement/Reduction

Raw Image Processing

High-speed Array
Operations

Zooming Window &
Shading Memory

Calculations using Simple
Run Length

Loading/Saving Programs
through RS-232C

Binary Level Setting Range

Overview of Improvements Section 1-1

171

1-1-2 Alphabetical Listing of New Functions & Commands

The following table lists the functions and commands that have been added for
OVL Version 2.00. (New features have been added to FILTDATA, IPL, LEVEL,
and LSORT.)

Command/Function Operation Type Page

A ARRYFUNC Performs high-speed operations between the variables of up to 4 arrays. Command 184

BATCHK Checks the voltage of the Memory Card’s battery. Function 185

BCDTOBIN Converts BCD data to binary. Function 185

B BEDGE Detects edge of a binary image. Command 185

BINTOBCD Converts binary data to BCD. Function 186

BMFUNC Performs logic operations on binary images. Command 186

CAMSYNC Selects camera synchronization method. Command 186

C CONKEY ON/
OFF/STOP

Enable and disable input of Console key interrupt. CONKEY STOP masks
input of Console key interrupt. (Interrupt is recorded by not executed until
CONKEY ON is executed.)

Command 187

D DILA Expands a binary image. Command 187

EDGRJECT Deletes the graphics surrounding a binary image. Command 188

E ELIM Eliminates isolated points from a binary image. Command 188

EROS Reduces a binary image. Command 189

FILTDATA Specifies the line filter factors. (With Sobel processing) Command 189

F FILTSEL Selects image filtering functions. Command 190

FORMAT Formats the Memory Card. Command 191

GETMDATA Obtains measurement data (MDATA) in a batch. Command 191

G GETVER Obtains the system’s version. Function 192

GMFUNC Performs logic operations on raw images. Command 193

H HFILL Fills holes in binary images. Command 193

I IPL Sets the OVL boot-up mode. (Loads and executes the designated file.) Command 194

L LEVEL Sets the binary level for each binary image plane. Command 195

LSORT Renumbers the assigned label numbers. Command 195

MASK3 Performs 3×3 mask filtering on raw images. Command 195

M MWMEAS Performs multiple-window measurements. Command 196

MWSET Defines windows for use in MWMEAS command. Command 197

O ON CONKEY
GOSUB

Defines the interrupt subroutine that will be executed when a Console key
interrupt input is received.

Command 197

R RUNL2 Performs secondary processing at high speed on data obtained with the
RUNL function.

Function 198

SCNJUDGE Reads the criteria that were set in the menu mode. Function 198

S SCNSTAND Reads the reference image data that were set in menu mode. Function 199

SOBEL Performs Sobel processing. Command 199

SZOOM Zooms (reduces/enlarges) the shading memory. Command 200

T THIN Reduces line thickness in a binary image. Command 200

WDILA Enlarges the binary image in window memory. Command 200

W WEROS Reduces the binary image in window memory. Command 201

WZOOM Zooms (reduces/enlarges) the window memory. Command 201

Overview of Improvements Section 1-1

172

1-1-3 Changes in Specifications
The following changes have been made in OVL specifications.

File Delimiters The following table shows the delimiters used with OVL Versions 1.�� and
2.00. Relevant files are data files and programs transferred via RS-232C or be-
tween the CPU and a Memory Card.

File I/O Delimiters used

Version 1.�� Version 2.00

Input CR+LF or LF CR+LF or CR

Output CR+LF CR+LF

As shown in the table, Version 2.00 cannot handle version 1.�� files that use
LF as a delimiter. Be sure to change these delimiters to CR or CR+LF before
inputting the files to OVL Version 2.00.

Compile Work Space The factory setting for compile work space has been increased from 4K bytes to
8K bytes in order to prevent “Out of compile work space” errors. The maximum
possible setting for compile work space is 16K bytes.

1-1-4 Increased Processing Speed
The following improvements have been made to increase processing speed.

Memory Card Access Speed Data in Memory Cards is accessed 1.5 times faster (on average) when loading/
saving programs or reading/writing data files. The increase in the access speed
varies depending on the operation being performed.

Labelling Speed The labelling operation performed with the LABEL command is 1.5 times faster
(on average), although the increase in the labelling speed varies depending on
the conditions.

The LDATA function obtains center-of-gravity data 1.5 times faster (on average),
although any data less significant than 0.0001 is truncated.

1-2 Additional OVL Capabilities
This section describes the additional capabilities of OVL Version 2.00. Refer to
PART II 1-1-1 Summary of Additional OVL Capabilities for a summary of these
improvements.

1-2-1 Multiple-window Functions
This section describes how to use the new multiple-window functions added for
OVL Version 2.00.

Multiple-window Features The multiple-window functions allow high-speed measurements to be made
with 9 or more windows. The basic features of multiple-window functions are
listed below:

1, 2, 3... 1. The possible number of windows is limited only by memory capacity.

2. Arbitrary window graphics are possible.

3. The items that can be measured are the area, center of gravity, and axis
angle within individual windows.

4. The measurement results are brought together and stored in array variables
at high speed.

5. X and Y position compensation functions are provided.

6. White or black pixels can be specified for measurements.

7. Binary image planes can be specified for measurements.

8. The X center of gravity and Y center of gravity can be measured simulta-
neously.

Additional OVL Capabilities Section 1-2

173

Multiple-window Applications The multiple-window functions are useful in the following kinds of situations:

• There are a large number of relatively small measurement regions.

• Position compensation is performed in a large window, but the measurement
region is small after position compensation.

• The presence of an object is measured by a large number of points.

Using Multiple Windows The basic procedure for using multiple-window functions is listed below:

1, 2, 3... 1. If measurements will be made in a window that is not rectangular, the win-
dow graphic must be drawn in the window memory beforehand. It is not nec-
essary to draw rectangular windows in window memory.

2. Before beginning the measurement, set the binary image plane and mea-
surement region (window) to be used in the measurement. Once these set-
tings have been made, they are usually valid thereafter.

3. Input the binary image in image memory. The image is normally input
through image bus 0.

4. Make the multiple-window measurement on the binary image that was input
in step 3.

5. Process the results of the multiple-window measurement.

There are two ways to specify the measurement region (window):

• The window’s coordinates can be set one-by-one by the program. This method
is convenient if the window coordinates are known beforehand.

• A window that has been set in menu mode can be registered as a measure-
ment region. Use the labelling function and the window’s coordinates will be
calculated automatically by a program. A program that automatically calcu-
lates the coordinates is required, but this is a very easy and convenient way to
set a window.

Refer to the sample programs in PART II 3-1 Determination of Windows’ ON/
OFF Status for a more detailed description of using multiple windows.

Take the following points into consideration when using multiple-window func-
tions:

1, 2, 3... 1. The processing time is proportional to the size of the rectangle that encloses
the measurement region (window).

2. Measurements are made on the rectangle that encloses the measurement
region. Consequently, if a second window is drawn within the rectangle that
encloses an L-shaped window, the second window will be measured as the
same window.

W0

W1

W0

W1

W2

If W0 and W1 are set within the same window plane as shown in the diagram
on the left, W1 will be within the rectangle that encloses W0. When W0 is
measured, the processing will use W0 and part of W1 as the measurement
region.

In these cases, split the window as shown in the diagram on the right. Split-
ting the window like this will increase the processing speed. Another solu-

Precautions for Multiple
Windows

Additional OVL Capabilities Section 1-2

174

tion would be to draw W0 and W1 in separate window planes and perform
the multiple-window measurement twice.

3. Multiple-window measurements cannot be performed in windows that have
been enlarged or reduced with the WZOOM command, so do not use the
multiple-window functions and WZOOM together.

1-2-2 Window Enlargement/Reduction
Windows can be enlarged with the WDILA command and reduced with the
WEROS command. This enlargement and reduction is useful when checking for
omission or blurring of characters.

10000 ’For the label with the largest area, draw an

10010 ’enlarged reverse window in window plane 7

10020 ’and a reduced window in window plane 6.

10030 DISPLAY 31,0 ’Binary image display

10040 WDISP –1,1,1 ’Window display

10050 CLS 2

10060 RMODE 0,0,0 ’Measure black pixels

10070 MEASURE ’Measure

10080 LABEL ’Labelling

10090 IF LNUM<0 THEN 10040

10100 LSORT 0 ’Sort by area

10110 ’Find coordinates of the enclosing rectangle.

10120 X1=LDATA(1,7)–10:Y1=LDATA(1,8)–10

10130 X2=LDATA(1,9)+10:Y2=LDATA(1,10)+10

10140 IF X1<1 THEN X1=1

10150 IF Y1<1 THEN Y1=1

10160 IF X2>510 THEN X2=510

10170 IF Y2>510 THEN Y2=510

10180 LPUTIMG 1,2,0,7 ’Draw in window memory

10190 WDILA 7,X1,Y1,X2,Y2,,3 ’Expand 3 times

10200 MASKBIT 2,0,&H7F ’Mask planes other than plane 7.

10210 BOX X1,Y1,X2,Y2,2,0,XOR ’Reverse window memory.

10220 MASKBIT 2,0,0

10230 LPUTIMG 1,2,0,6 ’Draw in window memory

10240 WEROS 6,X1,Y1,X2,Y2,,3 ’Reduce 3 times.

1-2-3 Binary Image Processing
Various kinds of binary image processing can be performed on binary images
stored in image memory.

10000 ’Detect edge in plane 7 in image memory.

10010 DISPLAY 31,3 ’Binary image: bus 1

10020 BACKDISP 1,7 ’Binary display plane 7.

10030 LEVEL 7,100,255 ’Binary level setting.

10040 VIDEOIN 0,1:VDWAIT 3 ’Input image

10050 FILTERIN 1 ’Display image memory contents

10060 BEDGE 0,7 ’Edge detection for entire image

Additional OVL Capabilities Section 1-2

175

1-2-4 Raw Image Processing
The MASK3 command performs 3×3 mask processing on raw images stored in
image memory.

The SOBEL command performs sobel processing on raw images stored in
image memory.

The FILTDATA and FILTER commands can be used for filter processing, but the
FILTER command processing is performed with hardware using the high-speed
interlaced method. On the other hand, the MASK3 and SOBEL command pro-
cessing is performed with the non-interlaced method.

10000 ’Sobel processing on a rectangular region.

10010 DISPLAY 31 ’Raw image display.

10020 FILTERIN 0 ’Camera image display.

10030 VIDEOIN:VDWAIT 3 ’Input image

10040 FILTERIN 1 ’Display image memory contents

10050 SOBEL 0,100,100,300,300 ’Sobel processing of rectangular region

1-2-5 Image-to-image Calculations
The BMFUNC command can perform calculations between binary images.

The GMFUNC command can perform calculations between raw images, but
only with F300-C11E models equipped with 2 image memories.

10000 ’Displays only the part change in 1 second.

10010 DISPLAY 31,3 ’Binary image: bus 1

10020 BACKDISP 1,7 ’Binary display plane 7.

10030 MASKBIT 3,0,&H7F ’Mask planes other than plane 7.

10040 VIDEOIN 0,1 ’Input binary image.

10050 VDWAIT 60 ’Wait 1 second.

10060 MASKBIT 3,0,&HBF ’Mask planes other than plane 6.

10070 VIDEOIN 0,1 ’Input binary image.

10080 VDWAIT 3 ’Wait for image to be input.

10090 FILTERIN 1 ’Display image memory contents

10100 BMFUNC 2,0,6,2,0,7 ’Use XOR to calculate parts that don’t match.

1-2-6 High-speed Array Operations
The ARRYFUNC command can be used to perform a variety of array operations
at high speed. Be sure to declare the array variables with the DIM command be-
fore using ARRYFUNC.

The following examples show 5 applications of the ARRYFUNC command.

Example 1 The content of array variable A is copied to array variable B.

ARRYFUNC 12,100,B,A

Example 2 The content of array variable A is divided by 100.

FOR I=0 TO 99

B(I)=100

NEXT

ARRYFUNC 6,100,A,A,B

Example 3 The area within each window is compared to the lower and upper limits and the
result of the comparison is stored in array variable JG.

GETMDATA 0,AR

ARRYFUNC 10,8,JG,AR,LO,HI

Additional OVL Capabilities Section 1-2

176

Example 4 The ON/OFF status in each window is output to a Terminal Block Unit.

GETMDATA 0,AR

ARRYFUNC 11,8,JG&,AR,LO,HI

DOUT JG&(0),0,32

Example 5 The ON/OFF status in 64 multiple windows is output to a Parallel I/O Unit.

MWMEAS 0,0,0,1,0,0,0,AR

ARRYFUNC 11,64,JG&,AR,LO,HI

DOUT JG&(0),0,32

VDWAIT 1

DOUT JG&(1),0,32

1-2-7 Renumbering Labels
Previously, label numbers could be sorted according to their area only, but the
LSORT command can renumber the labels according the windows’ center of
gravity or position on the screen.

The diagram on the left shows labelling according to screen position, beginning
in the upper left corner. The diagram on the right shows labelling according to the
location of the X center of gravity, beginning on the left. (The numbers indicate
the renumbered labels.)

Screen position
(horizontal numbering from upper-left)

X center-of-gravity position (from the left)

1

2 3

4
5

6
7

1

2

3

4

5

6

7

1-2-8 Zooming Window & Shading Memory
Window memory can be enlarged and reduced with the WZOOM command.
Window memory can be used like a bank if the WZOOM and WSCROLL com-
mands are used together.

512

512

No. 1
No. 2

No. 3 No. 4

Additional OVL Capabilities Section 1-2

177

When windows have been drawn as in the diagram above, the following com-
mands would expand and measure window No. 1.

WZOOM 2

WSCROLL 0,0

MEASURE

The following commands would expand and measure window No. 3.

WZOOM 2

WSCROLL 0,–512

MEASURE

The coordinates specified by the WSCROLL command are performed on the
coordinate space zoomed by the WZOOM command. If it is expanded by 2, the
space would be (0,0) to (1023,1023). If it is reduced by 2, the space would be
(0,0) to (255,255).

Operation of the SZOOM command is identical to that of the WZOOM com-
mand.

1-2-9 Filtering Selection
Image filtering functions can be selected easily with the FILTSEL command.
Images are output from image bus 0 after image filtering.

When vertical edge or horizontal edge filtering are selected, the contents of the
LUT (look-up table) for binary conversion are overwritten. With vertical edge or
horizontal edge filtering it is necessary to set the binary conversion level for the
negative portion of grayness.

Execute the following commands when setting the binary conversion level from
L1 to L2:

LEVEL –1,L1,L2:LEVEL –1,512–L2,512–L1,OR

To display a raw image with strong smoothing:

DISPLAY 31,0

FILTSEL 2,0

To display a binary image with strong smoothing:

DISPLAY 31,0

FILTSEL 2,1

LEVEL –1,100,255 ’Not necessary when specified beforehand.

To display a raw image with vertical edge filtering:

DISPLAY 31,0

FILTSEL 9,0 ’Contents of the LUT for binary conversion are overwritten.

To display a binary image with vertical edge filtering:

DISPLAY 31,0

FILTSEL 9,1

LEVEL –1,100,512–100 ’Absolutely necessary.

1-2-10 Checking Menu Settings
The criteria set with the menu can be read with the SCNJUDGE function.

This function is useful in a measurement program used for discrimination based
on the criteria, when only the criteria are set in menu mode.

Example 1
10000 CHANGE 0 ’Switch to scene 0.

10010 HI=SCNJUDGE(0,0,0,0) ’Upper limit for area of scene 0, window 0.

10020 LO=SCNJUDGE(0,0,0,1) ’Lower limit for area of scene 0, window 0.

Additional OVL Capabilities Section 1-2

178

10030 MEASURE ’Measure.

10040 A=MDATA(0,0) ’Obtain area.

10050 IF LO<=A AND A<=HI THEN PRINT ”OK” ELSE PRINT ”NG”

10060 GOTO 10030

Example 2
10000 ’Display the criteria set with the menu.

10010 K$(0)=”Area”

10020 K$(1)=”X grav cent”

10030 K$(2)=”Y grav cent”

10040 K$(3)=”Axis angle”

10050 K$(4)=”Edge angle”

10060 K$(5)=”X center coor.”

10070 K$(6)=”Y center coor.”

10080 K$(7)=”Angle of inclination”

10090 K$(8)=”Cross point X coordinate”

10100 K$(9)=”Cross point Y coordinate”

10110 U$(0)=”%”

10120 U$(1)=”±PIX”:U$(2)=”±mm”:U$(3)=”±�”
10130 U$(4)=”PIX”:U$(5)=”mm”:U$(6)=”�”

10200 FOR I=0 TO 9

10210 HI=SCNJUDGE(0,0,I,0)

10220 LO=SCNJUDGE(0,0,I,1)

10230 UN=SCNJUDGE(0,0,I,2)

10240 PRINT USING ”@ UPPER LIMIT=######.### @”;K$(I),HI,U$(UN)

10250 PRINT USING ”@ LOWER LIMIT=######.### @”;K$(I),LO,U$(UN)

10260 NEXT

The reference image data set with the menu can be read with the SCNSTAND
function.
This function is useful when comparing the reference image data set with the
menu or performing position compensation. All of the measurement item data
will be renewed when reference image data is registered with the menu.

10000 ’Display the reference image data set with the menu.

10010 DIM K$(11)

10020 K$(0)=”Area reference”

10030 K$(1)=”X grav cent reference”

10040 K$(2)=”Y grav cent reference”

10050 K$(3)=”Axis angle reference”

10060 K$(4)=”Edge angle reference”

10070 K$(5)=”X center coor. reference”

10080 K$(6)=”Y center coor. reference”

10090 K$(7)=”Angle of inclination reference”

10100 K$(8)=”Cross point X coor. reference”

10110 K$(9)=”Cross point Y coor. reference”

10120 K$(10)=”X position compensation”

10130 K$(11)=”Y position compensation”

10140 FOR I=0 TO 11

10150 PRINT USING ”@ #####.##”;K$(I),SCNSTAND(0,0,I)

10160 NEXT

Additional OVL Capabilities Section 1-2

179

1-2-11 Calculations using Simple Run Length
The RUNL2 function can be used to calculate a variety of values using the sim-
ple run length.

Work piece

Window

1

2

3

4

5

6

7

YS7

YE7

When the work piece and window are set up as shown in the diagram above, the
various measurements described below can be made using RUNL2. The rect-
angular pieces projecting to the right from the work piece are known as legs. The
Y coordinate of the upper edge of each leg is labelled YSn, and the Y coordinate
of each lower edge is labelled YEn.

There are 17 types of measurements possible with RUNL2. These measure-
ments, specified by numbers 0 to 16, are described below.

0: Area The total area of the legs (area of the work piece within the window).

1: Number of Runs The number of horizontal lines = the total height of the legs = Σ (YEn–YSn+1).

2: Average Run Length The average length of all legs.

3: Maximum Run Length The length of the longest leg (leg 5 in the diagram above).

4: Minimum Run Length The length of the shortest leg (leg 1 in the diagram above).

5: Median Run Length The length of the median leg (the middle of the group, ordered by length).

6: Max. Run Length Y Coor. The Y coordinate of the longest leg. (YS5 in the diagram above)

7: Min. Run Length Y Coor. The Y coordinate of the shortest leg. (YS1 in the diagram above)

8: Med. Run Length Y Coor. The Y coordinate of the median leg.

9: Number of Run Groups Number of legs.

10: Average Run Group Width The average width of the legs.

11: Max. Run Group Width The maximum value of leg width. (In the diagram above, leg 7’s width =
YE7–YS1+1.)

Additional OVL Capabilities Section 1-2

180

12: Min. Run Group Width The minimum value of leg width. (In the diagram above, leg 1’s width = YE1–
YS1+1.)

13: Median Run Group Width The median leg width.

The Y coordinate of the leg with the maximum width. (YS7 in the diagram above)

The Y coordinate of the leg with the minimum width. (YS1 in the diagram above)

The Y coordinate of the leg with the median width.

1-2-12 BCD/Binary Conversion
The BCDTOBIN function converts BCD values to binary and the BINTOBCD
function converts binary values to BCD. These functions are useful when BCD
measurement results need to be output in binary. The BCD values must be 8
digits or less.

10000 CHANGE 0 ’Scene 0 measurement conditions.

10010 MEASURE ’Measure.

10020 AREA=BINTOBCD(MDATA(0,0)) ’Converts area to BCD.

10030 DOUT AREA,0,32 ’8-digit BCD data is output in 32 bits.

1-2-13 Console Key Interrupts
The CONKEY ON, CONKEY OFF, and CONKEY STOP commands control
Console key interrupts and the ON CONKEY GOSUB command defines the in-
terrupt subroutine. Operation of the interrupt is identical to that of ON HELP GO-
SUB.

10000 ON CONKEY GOSUB *CONKEYINT

10010 CONKEY ON

10020 GOTO 10020

20000 *CONKEYINT

20010 PRINT ”Console key interrupt occurred.”

20020 PRINT ”The key code was: ”;HEX$(KEYIN(0))

20030 RETURN

1-2-14 Memory Card Operations
The BATCHK function is used to check the Memory Card’s battery voltage. This
is a convenient way to determine when the battery needs to be replaced.

SELECT BATCHK(”C:”)

CASE 0:PRINT ”Low voltage. Replace battery.”

CASE 1:PRINT ”Insufficient voltage. Replace battery soon.”

CASE 1:PRINT ”Battery voltage O.K.”

END SELECT

The Memory Card can be formatted with the FORMAT command. All data (such
as scene data saved in menu mode) will be erased when the Memory Card is
formatted.

When FORMAT is executed, a prompt will appear to confirm that the Memory
Card will be formatted. Input “Y” to proceed or “N” to cancel.

14: Max. Run Group Width
Y Coordinate

15: Min. Run Group Width
Y Coordinate

16: Median Run Group
Width Y Coordinate

Additional OVL Capabilities Section 1-2

181

1-2-15 Camera Synchronization
The CAMSYNC command can be used to set the camera synchronization meth-
od to internal synchronization or external synchronization. When internal syn-
chronization is selected, some time is required for the camera image to stabilize.
The selected synchronization method is valid for all cameras. It is not possible to
set the synchronization of any particular camera or have some cameras with in-
ternal synchronization and some with external synchronization.

10000 ’Switch to internal synchronization.

10010 CAMERA 0 ’Select internal synchronization camera.

10020 CAMSYNC 1 ’Select internal synchronization.

10030 VDWAIT 3 ’Wait for image to stabilize.

1-2-16 System Information
The GETVER function can be used to display the OVL version and other system
information. This function is useful when writing programs, since it can be used
to ensure compatibility.

10000 IF GETVER(1)=11 THEN PRINT ”There are 2 image memories.”

10010 PRINT ”OVL Version = ”;GETVER(2)

10020 PRINT ”System Version = ”;GETVER(3)

10030 IF GETVER(2)<2.00 THEN

10040 PRINT ”Multiple-window functions cannot be used.”

10050 END IF

1-2-17 Standard I/O Settings
Instead of using a keyboard, commands can be input from a device connected to
the RS-232C port. Instead of using a video monitor, data can be output to a de-
vice connected to the RS-232C port.
With standard I/O specified, settings can be made with IPL commands or the
menu mode’s “Y. System” “M.Initial Mode”. The settings will be effective the next
time that OVL is booted up, and will continue to be effective even after the power
is turned off.
For a standard I/O device connected through the RS-232C port, channel 0 is
fixed to 9600 baud, 8 data bits, no parity, and 1 stop bit. Screen control, such as
clearing the screen, cannot be performed just by outputting characters through
the RS-232C.
RS-232C file control cannot be performed on channel 0 when the RS-232C port
is specified for standard I/O device.

1-2-18 Loading/Saving Programs through RS-232C
LOAD” COM:” and SAVE” COM:” can be used to load and save programs
through the RS-232C port. The communications protocol is 9600 baud, 8 data
bits, no parity, and 1 stop bit.
Programs are input through the RS-232C port with LOAD” COM:”. The LOAD
command ends when the file’s end code (1A$ in hexadecimal) is received. Pro-
grams are output through the RS-232C port with SAVE” COM:”.
The following commands can be used to load and save screen data and image
data through the RS-232C port. They are used just like LOAD” COM:” and
SAVE” COM:”.

SCNLOAD ”COM:” Loads screen data.

SCNSAVE ”COM:” Saves screen data.

IMGLOAD ”COM:” Loads image data.

IMGSAVE ”COM:” Saves image data.

Additional OVL Capabilities Section 1-2

182

1-2-19 Binary Level Setting Range
In previous versions of OVL, the LEVEL command’s binary level range was 0 to
255. In Version 2.00, this range has been doubled to 0 to 511. When filtering has
been performed with the FILTDATA and FILTER commands, these values are
used when pixel values (grayness values) are negative. The upper and lower
limits 256 to 511 set with the LEVEL command correspond to pixel values (gray-
ness values) of –256 to –1.

Additional OVL Capabilities Section 1-2

183

SECTION 2
Reference

This section provides detailed information on the new Version 2.00 commands and functions. Examples are also provided.

184

ARRYFUNC ARRaY FUNCtion
(Command)

Action Performs a variety of array operations at high speed.

Format ARRYFUNC operation, data elements, array name 1, array name 2 [, array
name 3 [, array name 4]]

Example ARRYFUNC 10, 8, JUDGE, AREA, LO, HI

Description The ARRYFUNC command performs an operation between the variables of 2 to
4 arrays at one time, speeding up processing by eliminating the need for FOR-
NEXT or other loop processing. For example, this function is useful when
comparing measurement results to upper and lower limit values.

Specify the data elements as the number of array variables that will be used in
the operation. The number of array variables must be declared beforehand us-
ing the DIM command, and the number of array variables must be greater than
the specified number of data elements.

It is not necessary to include qualifiers or parentheses in the array name. When
decimal points aren’t used, the processing speed can be increased by using in-
teger type arrays or long integer type arrays.

Specify the operation with one of the values listed below to determine the type of
operation that will be performed. (A1 refers to array name 1, A2 refers to array
name 2, A3 refers to array name 3, and A4 refers to array name 4.)

0: A1 = A2 AND A3
1: A1 = A2 OR A3
2: A1 = A2 XOR A3
3: A1 = A2 + A3
4: A1 = A2 – A3
5: A1 = A2 × A3
6: A1 = A2 ÷ A3
7: A1 = –1 (A2 = A3)

= 0 (A2 <> A3)
8: A1 = –1 (A2 � A3)

= 0 (A2 < A3)
9: A1 = –1 (A2 � A3)

= 0 (A2 > A3)
10: A1 = –1 ((A3 � A2) AND (A2 � A4))

= 0 ((A2 < A3) OR (A4 < A2))
11: The results of operation 10 (above) are substituted for A1 as a bit string.

(This operation is described in more detail below.)
12: A1 = A2

Note 1. If A3 is 0 in the division in operation 6, the result will be 0.

2. Overflow processing is not performed.

Details of Operation 11 The right sides (comparison results of A2, A3, and A4) are stored in the left side’s
array variable beginning with the least significant bit or in numerical order begin-
ning with the one with the smallest element number.

When the right side’s operation result is true, the bit value is 1. When the opera-
tion result is false, the bit value is 0.

When the left side’s array variable is the integer type, the results of the right
side’s element numbers 0 to 15 are stored in element number 0, and the results
of element numbers 16 to 31 are stored in element number 1. Thereafter the pro-
cess is repeated.

ARRYFUNC Reference. Section 2

185

When the left side’s array variable is the long integer type, the results of the right
side’s element numbers 0 to 31 are stored in element number 0. Thereafter the
process is repeated.
If this function is used, each window’s area discrimination result is stored as bit
information, so it is easy to determine each windows’ OK/ON discrimination by
outputting this bit information through an output port.

BATCHK BATtery CHecK
(Function)

Action Checks the voltage of the Memory Card’s battery.

Format BATCHK (drive)

Example BAT=BATCHK(”C:”)

Description Checks the voltage of the Memory Card’s battery. One of the values listed below
will be returned to indicate the battery status.

0: Low voltage (Battery must be replaced.)
1: Insufficient voltage (Battery should be replaced soon.)
2: Normal voltage (Battery is O.K.)

The Memory Card is the “C” drive. An error will occur if a drive other than “C” is
specified.

BCDTOBIN BCD TO BINary
(Function)

Action Converts BCD data to binary.

Format BCDTOBIN (data)

Example A=BCDTOBIN(&H123)

Description Converts BCD data to binary. BCD values between 0 and &H99999999 can be
specified. This function is useful when inputting BCD data that was input to Ter-
minal Block Units or Parallel I/O Units.

BEDGE Binary EDGE
(Command)

Action Detects edges of a binary image.

Format BEDGE [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, link evalua-
tion constant]]]]]

Example BEDGE 0,7,0,0,200,200
BEDGE 0,7

Description Extracts edges from the binary image in image memory within the region defined
by (X1, Y1) and (X2, Y2). This command is useful for detecting the outline of a
work piece.

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane in which edges will be
detected.

The start point (X1, Y1) and end point (X2, Y2) of a rectangular region can be
specified to reduce the search region. The coordinates can be set in the range 1
to 510. The default points are (1, 1) and (510, 510).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

In edge detection processing, pixels with a value of 1 that are adjacent to a pixel
with a value of 0 are set aside, and the other pixels are set to 0.

BEDGE Reference. Section 2

186

BINTOBCD BINary TO BCD
(Function)

Action Converts binary data to BCD.

Format BINTOBCD (data)

Example A=BINTOBCD(100)

Description Converts binary data to BCD. This function is useful when outputting measure-
ment data to Terminal Block Units or Parallel I/O Units. Data values between 0
and 99999999 can be specified.

BMFUNC Binary Memory image FUNCtion
(Command)

Action Performs logic operations on two binary images.

Format BMFUNC operation, [page#1], plane#1, [page#2], plane#2 [, [X1] [, [Y1] [, [X2]
[,Y2]]]]

Example BMFUNC 0,,0,,7

Description BMFUNC performs a logic operation on two binary images in plane#1 and
plane#2. The result of the operation is written to page number 2, plane number 2
of image memory.

Three operations (AND, OR, and XOR) are available. Specify the operation by
setting the operation parameter to one of the values listed below.

0: AND
1: OR
2: XOR

Specify the desired image memory page numbers with page#1 and page#2.
The default value is 0 for both page#1 and page#2.

The logic operation will be performed within the rectangular region specified by
start point (X1, Y1) and end point (X2, Y2). The coordinates can be set in the
range 0 to 511. The default points are (0, 0) and (511, 511).

CAMSYNC CAMera SYNChronization
(Command)

Action Selects the method of camera synchronization.

Format CAMSYNC sync mode

Example CAMSYNC 0

Description Set the synchronization mode to 0 to specify external synchronization, set a val-
ue other than 0 to specify internal synchronization.

The selected synchronization method is valid for all cameras. It is not possible to
set the synchronization mode of particular cameras.

CAMSYNC Reference. Section 2

187

CONKEY ON/OFF/STOP CONsole KEY ON/OFF/STOP
(Command)

Action The CONKEY ON command enables Console key interrupts, the CONKEY OFF
command disables Console key interrupts, and the CONKEY STOP command
masks Console Key interrupts.

Format CONKEY ON
CONKEY OFF
CONKEY STOP

Example CONKEY ON

Description The CONKEY ON command enables Console key interrupts. When Console
key interrupts are enabled, pressing the Console key will interrupt the main pro-
gram and execute the interrupt subroutine defined by the ON CONKEY GOSUB
command. CONKEY OFF disables Console key interrupts and CONKEY STOP
masks Console Key interrupts.

The following commands are related to CONKEY ON, CONKEY OFF, and CON-
KEY STOP:

ON CONKEY GOSUB

DILA DILAte
(Command)

Action Expands a binary image.

Format DILA [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [,[link evalua-
tion constant] [, enlargements]]]]]]

Example DILA 0,7,0,0,200,200
DILA 0,7

Description Enlarges the binary image in image memory within the region defined by (X1,
Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane in which the binary
image will be expanded.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be expanded. The coordinates can be set in the range 1 to
510. The default points are (1, 1) and (510, 510).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

The enlargements setting specifies the number of times that the image will be
enlarged. The default value is 1.

When a pixel within the rectangular region has a value of 0 and the adjacent pixel
has a value of 1, enlargement processing will replace it with a value of 1.

The specified rectangular region cannot be exceeded in enlargement. Enlarge-
ment processing will end before the enlargements setting is reached if it is not
possible to enlarge the image further.

DILA Reference. Section 2

188

EDGRJECT EDGe ReJECT
(Command)

Action Deletes exterior graphics from a binary image.

Format EDGRJECT [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, link
evaluation constant]]]]]

Example EDGRJECT 0,7,0,0,200,200
EDGRJECT 0,7

Description Deletes exterior graphics from the binary image in image memory within the re-
gion defined by (X1, Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane in which the exterior
graphics will be deleted.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region in which the exterior graphics will be deleted. The default points are
(0, 0) and (511, 511).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

A “Vision error” will occur if the number of the diagram’s borderlines exceeds 255
or the length of the diagram’s borderline exceeds 4096.

ELIM ELIMinate
(Command)

Action Eliminates isolated points from a binary image.

Format ELIM [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, link evalua-
tion constant]]]]]

Example ELIM 0,7,0,0,100,100
ELIM 0,7

Description Eliminates isolated points from a binary image in image memory within the re-
gion defined by (X1, Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane in which the isolated
points will be eliminated.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region the isolated points will be eliminated. The coordinates can be set in
the range 1 to 510. The default points are (1, 1) and (510, 510).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

ELIM Reference. Section 2

189

EROS EROSion
(Command)

Action Reduces a binary image.

Format EROS [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [,[link evalua-
tion constant] [, reductions]]]]]]

Example EROS 0,7,0,0,200,200
EROS 0,7

Description Reduces the binary image in image memory within the region defined by (X1,
Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane in which the binary
image will be reduced.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be reduced. The coordinates can be set in the range 1 to
510. The default points are (1, 1) and (510, 510).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

The reductions setting specifies the number of times that the image will be re-
duced. The default value is 1.

When a pixel within the rectangular region has a value of 1 and the adjacent pixel
has a value of 0, reduction processing will replace it with a value of 0.

The specified rectangular region cannot be exceeded in reduction. Reduction
processing will end before the reductions setting is reached if it is not possible to
reduce the image further.

FILTDATA FILTer DATA
(Command)

Action Specifies the line filter factors.

Format FILTDATA data 0, data 1, ... , data 8 [, [global factor] [, sobel processing]]

Example FILTDATA 0,1,1,1,1,1,1,1,1,8

Description The FILTDATA command sets the line filter factors. Either “2: sharpened image”
or “5: line filter image” must be selected with the FILTER command to enable the
line filter factors specified with the FILTDATA command.

If “2: sharpened image” or “5: line filter image” have been selected with the
FILTER command, filtering will be performed according to the following equa-
tion:

Pixel grayness = (∑ data n × Mn) ÷ (global factor)

(Mn indicates the grayness of the pixel itself and the adjacent pixels.)

The line filter factors are specified with the parameters data 0 to data 8. The
positional relationship of these pixels is shown in the diagram below.

Data 1 Data 2 Data 3

Data 4 Data 0 Data 5

Data 6 Data 7 Data 8

FILTDATA Reference. Section 2

190

The line filter factors for data 1 to data 8 can be set to 0, ±1, ±2, or ±4. The line
filter factor for data 0 can also be set to ±8.

The global constant parameter can be set to 0, 1, 2, 4, 8, or 16. The default value
is 1.

Set the sobel processing parameter to 0 to disable sobel integration, set a value
other than 0 to enable sobel integration. The default value is 0.

When sobel integration is enabled, the original image will undergo line filtering
and then sobel processing. Sobel integration is effective only when “2:
sharpened image” has been selected with the FILTER command.

FILTSEL FILTer SELect

(Command)

Action Specifies the type of image filtering.

Format FILTSEL type [, image type]

Example FILTSEL 2

Description The FILTSEL command specifies the type of image filtering. The image filtering
specified with this command is the same as the filtering selected through the
menu.

The type parameter specifies the type of filtering. Specify one of the values listed
below:

0: OFF
1: Weak smoothing
2: Strong smoothing
3: Edge enhancement level 1
4: Edge enhancement level 2
5: Edge enhancement level 3
6: Edge enhancement level 4
7: Edge enhancement level 5
8: Relief
9: Vertical edges
10: Horizontal edges
11: All edges

When the FILTSEL command is executed, the information set with the FILTER
and FILTDATA commands is overwritten and invalidated. When “9: Vertical
edges” or “10: Horizontal edges” is selected, the binary level (contents of look-up
table for binary conversion) is overwritten. The binary level must be set again.

The image type parameter determines whether the image is binary or raw. If nec-
essary, specify the image type according to the current image display. (The
default value is 0.)

0: Raw image (LUT OFF)
1: Binary image (LUT ON)

FILTSEL Reference. Section 2

191

FORMAT FORMAT
(Command)

Action Formats a Memory Card.

Format FORMAT drive

Example FORMAT ”C:”

Description The FORMAT command formats a Memory Card. When the FORMAT com-
mand is executed, a prompt will appear (Are you sure? (Y/N)) to confirm that the
Memory Card will be initialized. Press Y to proceed or N to cancel.

GETMDATA GET Measure DATA
(Command)

Action Obtains data generated by the MDATA function.

Format GETMDATA data type, array name [, subscript]

Example GETMDATA 0,MD

Description The MDATA function obtains data one-by-one, and the GETMDATA command
obtains this data in a batch of 8 windows and stores the data in array variables.

The data type parameter specifies the type of data. Specify one of the values
listed below:

0: Area (pixel units)
1: Area after calibration
2: X center of gravity (pixel units)
3: X center of gravity after calibration
4: Y center of gravity (pixel units)
5: Y center of gravity after calibration
6: Axis angle (pixel units)
7: Axis angle after calibration
8: X center of gravity, Y center of gravity (pixel units)
9: X center of gravity, Y center of gravity after calibration
10: All (pixel units)
11: All after calibration

The array name parameter indicates the array variables in which the data will be
stored. The number of array variables in the specified array must be declared
beforehand using the DIM command. (It is not necessary to include qualifiers or
parentheses in the array name.)

The number of array variables declared in DIM command must be greater than
the number of data elements being obtained.

The first location in the array in which data will be stored can be specified in the
qualifier parameter. The default location is the beginning of the array.

When the data type parameter is set to 0, data will be stored as follows:

A(0): Area of plane 0
A(1): Area of plane 1

. . .

. . .

. . .
A(7): Area of plane 7

GETMDATA Reference. Section 2

192

When the data type parameter is set to 8, data will be stored as follows:

A(0): X center of gravity in plane 0
A(1): X center of gravity in plane 1

. . .

. . .

. . .
A(7): X center of gravity in plane 7
A(8): Y center of gravity in plane 0

. . .

. . .

. . .
A(15): Y center of gravity in plane 7

When the data type parameter is set to 10, data will be stored as follows:

A(0): Area of plane 0
A(1): Area of plane 1

. . .

. . .

. . .
A(7): Area of plane 7
A(8): X center of gravity in plane 0

. . .

. . .

. . .
A(31): Axis angle in plane 7

GETVER GET VERsion

(Function)

Action Obtains system version and other data.

Format GETVER (type)

Example MACHINE=GETVER (0)

Description The GETVER function can determine the system version and other data. This
function can be used to create a single program that automatically compensates
for hardware and software differences so that it can be run on different systems.

The type parameter specifies the type of data that will be obtained, as shown in
the following table.

Type Data obtained Examples of returned values

0 Series-type 300 indicates the F300.

1 IMP Unit code 10: F300-C10EV2

11: F300-C11E

2 OVL version Actual version number, such as 1.03 or 2.00

3 System version Actual version number, such as 1.05 or 2.00

GETVER Reference. Section 2

193

GMFUNC Gray Memory image FUNCtion
(Command)

Action Performs operations on two raw images.

Format GMFUNC operation, page#1, page#2 [, [X1] [, [Y1] [, [X2] [,Y2]]]]

Example GMFUNC 7,0,1

Description GMFUNC performs an operation on two raw images within the rectangular re-
gion specified by start point (X1, Y1) and end point (X2, Y2). The result of the
operation is written to page number 2 of image memory.

The following ten operations are available. Specify the operation by setting the
operation parameter to the corresponding value from 0 to 9.

0: AND
1: OR
2: XOR
3: Addition 1 (Result set to 255 if greater than 255.)
4: Addition 2 (Remainder of results divided by 256 if greater than 255.)
5: Subtraction 1 (Result set to 0 if less than 0.)
6: Subtraction 2 (Remainder of results divided by 256 if less than 0.)
7: Maximum value
8: Minimum value
9: Absolute value (Absolute value of the difference of the two values.)

Specify the desired image memory page numbers with page#1 and page#2.
The same page can be specified for both page numbers.

The operation will be performed within the rectangular region specified by start
point (X1, Y1) and end point (X2, Y2). The coordinates can be set in the range 0
to 511. The default points are (0, 0) and (511, 511).

HFILL Hole FILL
(Command)

Action Fills holes in a binary image.

Format HFILL [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, link evalua-
tion constant]]]]]

Example HFILL 0,7,0,0,100,100
HFILL 0,7

Description The HFILL command fills holes in a binary image in image memory within the
region defined by (X1, Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane in which the binary
image will be processed.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be processed. The default points are (0, 0) and (511, 511).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

A “Vision error” will occur if the number of hole borderlines exceeds 255 or the
length of the hole’s borderline exceeds 4096.

HFILL Reference. Section 2

194

IPL Initial Program Loading
(Command)

Action Sets the OVL boot-up mode. (Loads and executes the designated file.)

Format IPL [{0|1|file name}] [, [value 1] [, [value 2] [, [value 3] [, [value 4] [, [value 5] [,
[standard input device] [, standard output device]]]]]]]

Example IPL 1
IPL ”SAMPLE”
IPL ,,,,,,1

Description The IPL command sets the OVL boot-up mode. The new settings are valid the
next time that OVL is booted up, and the settings are retained even when the
power is turned off.

The 0|1|file name parameters specify the OVL boot-up procedure used when
the power is turned on. (If a filename is specified, that file will be loaded and
executed automatically.)

0: OVL will not be booted automatically.
1: The program in the IMP Unit will be booted automatically.

The value 1 through value 5 parameters specify various OVL settings, as shown
below:

Value 1: Number of files that can be open simultaneously. (1 to 11)
Value 2: Array variable, character variable area (1K bytes to 62K bytes)
Value 3: User stack area (1K bytes or 2K bytes)
Value 4: Compiler area (2K bytes to 16K bytes)
Value 5: Number of image display lines (20 or 25)

The standard input device parameter specifies the standard input device used
when OVL has been started.

0: Keyboard
1: RS-232C

The standard output device parameter specifies the standard output device
used when OVL has been started.

0: Video monitor
1: RS-232C

The settings will be displayed if no parameters are entered. The factory settings
for these parameters are shown below:

Parameter Use Factory setting

Value 1 Number of files that can be open 11

Value 2 Array variable, character variable area 32 (K-bytes)

Value 3 User stack area 2 (K-bytes)

Value 4 Compiler area 8 (K-bytes)

Value 5 Number of image display lines 25

Standard input Standard input device 0 (Keyboard)

Standard output Standard output device 0 (Video monitor)

IPL Reference. Section 2

195

LEVEL LEVEL
(Command)

Action Sets the binary level for each binary image plane.

Format LEVEL binary image plane#, lower limit, upper limit [, mode]

Example LEVEL –1,128,255
LEVEL 0,0,255,XOR

Description The LEVEL command sets the binary level for each binary image plane.

Specify the binary image plane (0 to 7) for which the level is set with the binary
image plane# parameter. Set the binary image plane# to –1 to set all binary
image planes to the specified binary level.

The lower limit and upper limit parameters specify the range for the binary level.
Each parameter can be set from 0 to 511. When the level is within the range, the
pixel is given a value of 1 (usually white).

The mode parameter specifies the following operations. The default setting is
“overwrite”.

OR: set the specified range to pixel value 1 (white).
NOT: set the specified range to pixel value 0 (black).
XOR: reverse the specified range

LSORT Label SORT
(Command)

Action Renumbers the assigned label numbers.

Format LSORT mode

Example LSORT 0
LSORT 8

Description The LSORT command reorders and renumbers the labeled image data accord-
ing to the specified ordering mode. The mode parameter specifies one of the 10
ordering modes listed below.

0: Area, descending
1: Area, ascending
2: X center of gravity, descending
3: X center of gravity, ascending
4: Y center of gravity, descending
5: Y center of gravity, ascending
6: From upper left of screen, vertically
7: From lower right of screen, vertically
8: From upper left of screen, horizontally
9: From lower right of screen, horizontally

Be sure that the LABEL command has been executed before executing LSORT.

MASK3 MASK 3×3
(Command)

Action Performs 3×3 mask filtering on raw images.

Format MASK3 [page#], X1, Y1, X2, Y2, array name [, global factor]

Example MASK3 0,100,100,200,200,TABLE,2

Description The MASK3 command performs 3×3 mask filtering on raw images in image
memory within the region defined by (X1, Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

MASK3 Reference. Section 2

196

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be processed. The default points are (1, 1) and (511, 511).
The coordinates can be set in the range 1 to 511.

The elements of the array can have values from –8 to +8. The following table
shows the relationship between the array elements and the pixels.

TABLE (1) TABLE (2) TABLE (3)

TABLE (4) TABLE (0) TABLE (5)

TABLE (6) TABLE (7) TABLE (8)

The global factor parameter can be set to 0, 1, 2, 4, 8, or 16. The default value is
1.

MWMEAS Multiple Window MEASure
(Command)

Action Takes measurements of multiple windows.

Format MWMEAS [page#], binary image plane#, pixel type [, [window operation] [,
[X compensation] [, [Y compensation]]], data type, data array

Example MWMEAS 0,0,1,1,0,0,0,MDAT

Description Takes measurements of characteristics within windows registered with the
MWSET command, and stores the results in array variables.

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane (0 to 7) in which the
measurements will be taken.

The pixel type parameter specifies whether black or white pixels will be mea-
sured. Set this parameter to 0 to specify black pixels. A setting other than 0 spec-
ifies white pixels.

The window operation parameter determines whether the measurement will be
made on the rectangular region defined in MWSET (window operation=0), or on
the result of an AND between this region and the content of window memory
(window operation=1).

The X compensation and Y compensation parameters can specify X and Y off-
sets from –512 to 511. The position compensation parameters cannot be used
when the window operation parameter is set to 0.

The data type parameter specifies the type of data that will be measured. Speci-
fy one of the values listed below:

0: Area (pixel units)
1: Area after calibration
2: X center of gravity (pixel units)
3: X center of gravity after calibration
4: Y center of gravity (pixel units)
5: Y center of gravity after calibration
6: Axis angle (pixel units)
7: Axis angle after calibration
8: X, Y center of gravity (pixel units)
9: X, Y center of gravity after calibration

The data array parameter indicates the name of the array variables in which the
data will be stored.

MWMEAS Reference. Section 2

197

Data will be stored in the array in the order that the windows were registered with
the MWSET command. When the data type parameter is set to X, Y center of
gravity measurement, data will be stored as follows:

1st array element: X center of gravity for window 0
2nd array element: Y center of gravity for window 0
3rd array element: X center of gravity for window 1
4th array element: Y center of gravity for window 1

. . .

. . .

. . .
Array element 2n+1: X center of gravity for window n
Array element 2n+2: Y center of gravity for window n

MWSET Multiple Window SET
(Command)

Action Registers windows for multiple-window measurements.

Format MWSET binary image plane#, number of windows, X1 array, Y1 array,
X2 array, Y2 array

Example MWSET 0,10,X1,Y1,X2,Y2

Description The MWSET command registers windows for multiple-window measurements
by the MWMEAS command.

The binary image plane# parameter specifies the binary image plane (0 to 7) in
which the measurements will be taken.

The number of windows parameter specifies the number of windows that will be
registered.

The X1 and Y1 arrays define the coordinates of upper left corners of the windows
and the X2 and Y2 arrays define the coordinates of the lower right corners of the
windows. The coordinates must be within the range 0 to 511.

The number of array variables in the specified arrays must be declared before-
hand using the DIM command. (It is not necessary to include qualifiers or paren-
theses in the array name.)

The number of array variables declared in DIM must be greater than the number
of windows that are being registered.

ON CONKEY GOSUB ON CONsole KEY GOSUB
(Command)

Action Specifies the starting line number of the interrupt subroutine called by pressing
the Console key.

Format ON CONKEY GOSUB line number or label

Example ON CONKEY GOSUB *CKEYINT

Description The ON CONKEY GOSUB command specifies the starting line number of the
interrupt subroutine called by pressing the Console key. A label can be used
instead of a line number to specify the start of the interrupt subroutine.

The following commands are related to ON CONKEY GOSUB:

CONKEY ON
CONKEY OFF
CONKEY STOP

ON CONKEY GOSUB Reference. . . Section 2

198

RUNL2 RUN Length 2
(Function)

Action Performs high-speed processing on data obtained by the RUNL function.

Format RUNL2 (binary image plane#, Y1, Y2, data measured)

Example A=RUNL2 (0,100,200,0)

Description The RUNL2 function processes the simple run length data to obtain more de-
tailed information. In order to use the RUNL2 function, the run function must be
turned on with the MMODE command and the simple run length data must be
measured.
The Y1 and Y2 parameters define the measurement range (on the Y-axis) and
must be within the range 0 to 479.

The data measured parameter specifies the type of data that will be measured.
Specify one of the values listed below:

0: Area
1: Number of runs
2: Average run length
3: Maximum run length
4: Minimum run length
5: Median run length
6: Y coordinate of maximum run length
7: Y coordinate of minimum run length
8: Y coordinate of median run length
9: Number of run groups
10: Average run group width
11: Maximum run group width
12: Minimum run group width
13: Median run group width
14: Y coordinate of maximum run group width
15: Y coordinate of minimum run group width
16: Y coordinate of median run group width

SCNJUDGE SCeNe JUDGEment
(Function)

Action Obtains the criteria that were set in menu mode.

Format SCNJUDGE (scene number, binary image plane#, item, data type)

Example LO=SCNJUDGE (0,0,0,1)

Description The SCNJUDGE function obtains the criteria for measurement items that were
set in menu mode.

The scene number parameter specifies the scene number (0 to 15).

The binary image plane# parameter specifies the binary image plane (0 to 7).

The item parameter specifies the measurement item. Specify one of the values
listed below:

0: Area
1: X center of gravity
2: Y center of gravity
3: Axis angle
4: Edge angle
5: X center coordinate
6: Y center coordinate
7: Angle of inclination
8: Cross point X coordinate
9: Cross point Y coordinate

SCNJUDGE Reference. Section 2

199

The data type parameter specifies the type of data:

0: Upper limit
1: Lower limit
2: Unit

When “2: Unit” is specified for the data type, the SCNJUDGE function will return
one of the following values:

0: % of reference image
1: Pixel difference to reference image (pixel units)
2: Pixel difference to reference image after calibration
3: Angle difference to reference image
4: Actual work measurement in pixels (pixel units)
5: Actual work measurement after calibration
6: Actual work measurement in degrees

SCNSTAND SCeNe STANDard
(Function)

Action Obtains the reference image data that were set in menu mode.

Format SCNSTAND (scene number, binary image plane#, data type)

Example AR=SCNSTAND (0,0,0)

Description The SCNSTAND function obtains the reference image data that were set in
menu mode.

The scene number parameter specifies the scene number (0 to 15).

The binary image plane# parameter specifies the binary image plane (0 to 7).

The data type parameter specifies the type of data. Specify one of the values
listed below:

0: Area
1: X center of gravity
2: Y center of gravity
3: Main axis angle
4: Edge angle
5: X center coordinate
6: Y center coordinate
7: Angle of inclination
8: X coordinate of cross point
9: Y coordinate of cross point
10: Reference X coordinate for X compensation
11: Reference Y coordinate for Y compensation

SOBEL SOBEL
(Command)

Action Performs sobel processing.

Format SOBEL [[page#] [, [X1] [, [Y1] [, [X2] [, Y2]]]]]

Example SOBEL ,100,100,200,200

Description The SOBEL command performs sobel processing within the rectangular region
defined by (X1, Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be processed. The coordinates can be set in the range 1 to
510. The default points are (1, 1) and (510, 510).

SOBEL Reference. Section 2

200

SZOOM Shading memory ZOOM
(Command)

Action Zooms (enlarges or reduces) the shading memory.

Format SZOOM [zoom factor [, X reference coordinate, Y reference coordinate]]

Example SZOOM 4

Description The SZOOM command zooms (enlarges or reduces) the shading memory.

The zoom factor parameter specifies the factor by which the shading memory
will be magnified (0.25 to 512.00). The default zoom factor is 1.

The X and Y reference coordinates define the point of reference for zooming.
The default point is (0,0).

THIN THIN
(Command)

Action Reduces line thickness for a binary image in image memory.

Format THIN [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, link evalua-
tion constant]]]]]

Example THIN 0,7,0,0,100,200
THIN 0,7

Description The THIN command reduces line thickness for binary images in image memory
within the rectangular region defined by (X1, Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane in which the binary
image will be processed.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be processed. The coordinates can be set in the range 0 to
511. The default points are (0, 0) and (511, 511).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

WDILA Window DILAte
(Command)

Action Enlarges the binary image in window memory.

Format WDILA binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [,[link evaluation
constant] [, enlargements]]]]]]

Example WDILA 7,0,0,100,100
WDILA 7,0

Description The WDILA command enlarges the binary image in window memory within the
region defined by (X1, Y1) and (X2, Y2).

The binary image plane# specifies the binary image plane in which the binary
image will be reduced.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be enlarged. The default points are (1, 1) and (510, 510).
The coordinates can be set in the range 1 to 510.

WDILA Reference. Section 2

201

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

The enlargements setting specifies the number of times that the image will be
enlarged. The default value is 1.

When a pixel within the rectangular region has a value of 0 and the adjacent pixel
has a value of 1, enlargement processing will replace it with a value of 1.

The specified rectangular region cannot be exceeded in enlargement. Enlarge-
ment processing will end before the enlargements setting is reached if it is not
possible to enlarge the image further.

WEROS Window EROSion
(Command)

Action Reduces the binary image in window memory.

Format WEROS binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, [link evaluation
constant] [, reductions]]]]]]

Example WEROS 7,0,0,100,100
WEROS 7,0

Description Reduces the binary image in window memory within the region defined by (X1,
Y1) and (X2, Y2).

The binary image plane# specifies the binary image plane in which the binary
image will be reduced.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be reduced. The coordinates can be set in the range 1 to
510. The default points are (1, 1) and (510, 510).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

The reductions setting specifies the number of times that the image will be re-
duced. The default value is 1.

When a pixel within the rectangular region has a value of 1 and the adjacent pixel
has a value of 0, reduction processing will replace it with a value of 0.

The specified rectangular region cannot be exceeded in reduction. Reduction
processing will end before the reductions setting is reached if it is not possible to
reduce the image further.

WZOOM Window memory ZOOM
(Command)

Action Zooms (enlarges or reduces) the window memory.

Format WZOOM [zoom factor [, X reference coordinate, Y reference coordinate]]

Example WZOOM 4

Description The WZOOM command zooms (enlarges or reduces) the window memory.

The zoom factor parameter specifies the factor by which the window memory will
be magnified (0.25 to 512.00). The default zoom factor is 1.

The X and Y reference coordinates define the point of reference for zooming.
The default point is (0,0).

WZOOM Reference. Section 2

202

When the WZOOM command is executed, WSCROLL 0,0 is executed internal-
ly. After the WZOOM command has been executed, the scroll quantities and
rotation center specified with the WSCROLL command are specified for the
coordinate space after zooming.

Measurements can be made on the zoomed window image (the image dis-
played on the screen).

WZOOM Reference. Section 2

203

SECTION 3
Sample Programs

This section provides sample programs using the new Version 2.00 commands and functions.

3-1 Determination of Multiple Windows’ ON/OFF Status 204.
3-1-1 Introduction 204.
3-1-2 Program 204.

3-2 Shape Inspection using Window Enlargement/Reduction 208.
3-2-1 Introduction 208.
3-2-2 Program 208.

204

3-1 Determination of Multiple Windows’ ON/OFF Status

3-1-1 Introduction
This program uses the multiple-window functions to determine the ON/OFF sta-
tus of each window. Perform the operations below in menu mode beforehand.

1, 2, 3... 1. Set up several windows for multiple-window use in window plane 0.

2. Set up a window in window plane 7 for position compensation.

3. Set the binary level.

4. If necessary, register a reference image for position compensation.

Once the program has been executed, the ON/OFF status of each window can
be determined using the following operations:

Measurement Measure when the Console’s Enter Key is pressed or the STEP signal goes ON.
Measure the area of black pixels in the window. The percentage of black pixels
should be greater than 50% in each window. The results are output to the screen
and Parallel I/O Unit. The output to the Parallel I/O Unit will be ON if the result for
that window is OK, and OFF if the result is not NG.

Reference Image Registration Register the reference image when the Console’s Shift+Enter Keys are pressed
or DI5 is ON and the STEP signal goes ON. Window plane 7’s center of gravity
coordinates are recorded as the reference position.

3-1-2 Program

10000 ’**

10010 ’ (c)Copyright OMRON Co. 1992

10020 ’ All Rights Reserved

10030 ’––

10040 ’ F300 Sample Program

10050 ’Multiple-window sample program #1

10060 ’ Determines whether the area in each window is OK/NG.

10070 ’ It is OK if 50% or more of the area is black.

10080 ’ Results output to the screen and Parallel I/O.

10090 ’Set the following conditions in menu mode for scene 0:

10100 ’ Window plane 0: Multiple windows

10110 ’ Window plane 7: Window for position compensation

10120 ’Procedure details

10130 ’**

10140 ’==

10150 ’Data definitions

10160 ’==

10170 CLEAR

10180 W.SCN=0 ’Scene number

10190 W.MAX=255 ’Max. number of windows

10200 N=W.MAX

10210 DIM W.X1%(N),W.Y1%(N) ’Start points defining multiple windows

10220 DIM W.X2%(N),W.Y2%(N) ’End points defining multiple windows

10230 DIM W.WA%(N) ’Areas of multiple windows

10240 DIM W.AR%(N) ’Reference areas of multiple windows

Determination of Multiple Windows’ ON/OFF Status Section 3-1

205

10250 DIM W.LO%(N),W.HI%(N) ’Upper/lower limits for area discr.

10260 DIM W.JG&(N/32) ’Storage of discrimination results

10270 W.LO=50 ’Lower limit reference % for area discr.

10280 W.HI=100 ’Upper limit reference % for area discr.

10290 W.BW0=0 ’Black/white specification of plane 0

10300 W.BW7=0 ’Black/white specification of plane 7

10310 W.SX=0:W.SY=0 ’Reference image X,Y

10320 W.DX=0:W.DY=0 ’Compensation X,Y

10330 ’––

10340 ’Main process

10350 ’––

10360 *MAIN

10370 GOSUB *HWINIT

10380 GOSUB *INITIAL

10390 GOSUB *MWINDSET

10400 ON INTR GOSUB *INTR1:INTR ON

10410 ON CONKEY GOSUB *INTR2:CONKEY ON

10420 WHILE (1)

10430 WEND

10440 ’––

10450 ’Initialization process

10460 ’––

10470 *INITIAL

10480 CONSOLE ,,0:LOCATE ,,0

10490 DISPLAY 31 ’Displays the camera image

10500 WINDOW W.SCN ’Window drawing

10510 CAMMODE 1 ’Output of frame buffer contents

10520 FLASH 2 ’Shutter with STEP synchronization

10530 MMODE 7,W.BW7,1 ’Measurement mode for plane 7

10540 W.SX=SCNSTAND(W.SCN,7,1) ’Obtain reference X center of gravity

10550 W.SY=SCNSTAND(W.SCN,7,2) ’Obtain reference Y center of gravity

10560 RETURN

10570 ’––

10580 ’Hardware initialization

10590 ’––

10600 *HWINIT

10610 CAMERA 0:CAMMODE 0:FLASH 1:FILTERIN 0:FILTER 0,1,0

10620 MASKBIT 2,0,0:MASKBIT 3,0,0:MASKBIT 4,0,0

10630 CLS 0:CLS 1:CLS 2:CLS 3:SBANK 1:CLS 4:SBANK 0:CLS 4

10640 LEVEL –1,128,255:WSCROLL 0,0:SSCROLL 0,0:WZOOM:SZOOM

10650 DIM LUTDATA0%(256),LUTDATA1%(256)

10660 FOR I=0 TO 255

10670 LUTDATA0%(I)=(I*160)/255:LUTDATA1%(I)=(I*192)/255

10680 NEXT

10690 SETDLUT 0,LUTDATA0%:SETDLUT 1,LUTDATA1%

10700 ERASE LUTDATA0%,LUTDATA1%

Determination of Multiple Windows’ ON/OFF Status Section 3-1

206

10710 FOR I=0 TO 6

10720 SETDLVL I

10730 NEXT

10740 DISPLAY 16:WDISP –1,0,0:BACKDISP 0

10750 RETURN

10760 ’––

10770 ’Multiple window coordinate, area discrimination value settings

10780 ’––

10790 *MWINDSET

10800 FILTERIN 1:CLS 3:BACKDISP 1,0 ’Display window only

10810 WDISP –1,0,0:WDISP 0,1,1 ’Display plane 0

10820 LEVEL –1,511,511

10830 RMODE 0,0,1:MEASURE:LABEL:LSORT 8

10840 W.MAX=LNUM

10850 IF W.MAX<1 THEN

10860 PRINT ”WINDOWS ARE NOT SET.”

10870 END

10880 END IF

10890 FOR I=1 TO W.MAX ’Obtain circumscribed coordinates

10900 W.WA%(I–1)=LDATA(I,0)

10910 W.X1%(I–1)=LDATA(I,7):W.Y1%(I–1)=LDATA(I,8)

10920 W.X2%(I–1)=LDATA(I,9):W.Y2%(I–1)=LDATA(I,10)

10930 NEXT

10940 MWSET 0, W.MAX, W.X1%, W.Y1%, W.X2%, W.Y2%

10950 FILTERIN 0:CLS 3:BACKDISP 0

10960 WDISP –1,1,1

10970 SCNLUT W.SCN ’Returns binary level

10980 FOR I=0 TO W.MAX–1 ’Sets the area discrimination value

10990 W.LO%(I)=W.WA%(I)*W.LO/100

11090 W.HI%(I)=W.WA%(I)*W.HI/100+1

11010 NEXT

11020 RETURN

11030 ’––

11040 ’STEP interrupt process

11050 ’––

11060 *INTR1

11070 IF PIN(5) THEN

11080 GOSUB *STANDMEAS ’Reference registration

11090 ELSE

11110 GOSUB *MEAS ’Measurement

11110 END IF

11120 RETURN

11130 ’––

11140 ’Console Key interrupt process

11150 ’––

11160 *INTR2

Determination of Multiple Windows’ ON/OFF Status Section 3-1

207

11170 K=KEYIN(0)

11180 IF K=&H90 THEN GOSUB *STANDMEAS ’Shift+Enter Reference regist.

11190 IF K=&H10 THEN GOSUB *MEAS ’Enter Measurement

11200 RETURN

11210 ’––

11220 ’Reference image registration (Records center of gravity coordinates for position compensation.)

11230 ’––

11240 *STANDMEAS

11250 WSCROLL 0,0

11260 MEASURE

11270 W.SX=MDATA(7,2)

11280 W.SY=MDATA(7,4)

11290 LOCATE 0,0:PRINT ”Reference registration completed.”

11300 RETURN

11310 ’––

11320 ’Measurement

11330 ’––

11340 *MEAS

11350 TIM0&=TIMER

11360 WSCROLL 0,0 ’Moves to window’s origin.

11370 EVENTIN 1,0,1:MEASURE ’Center of gravity measurement

11380 W.DX=MDATA(7,2)–W.SX ’Position compensation calculation

11390 W.DY=MDATA(7,4)–W.SY

11400 WSCROLL W.DX, W.DY ’Position compensation

11410 MWMEAS 0, 0, W.BW0, 1, W.DX, W.DY, 0, W.AR%

11420 ARRYFUNC 11, W.MAX, W.JG&, W.AR%, W.LO%, W.HI%

11430 TIM&=TIMER–TIM0&

11440 LOCATE 0,0:PRINT USING ”Processing time=####ms”;TIM&*10

11450 GOSUB *JUDGDISP

11460 GOSUB *JUDGOUT

11470 RETURN

11480 ’––

11490 ’Discrimination results display process

11500 ’––

11510 *JUDGDISP

11520 FOR I=0 TO W.MAX–1

11530 J=W.JG7(FIX(I/32)) AND 2^(I MOD 32)

11540 IF J THEN

11550 COLOR 0:J$=”OK”

11560 ELSE

11570 COLOR 7:J$=”NG”

11580 END IF

11590 PRINT USING ”No ### @”;I,J$

11600 COLOR 0

11610 NEXT

11620 RETURN

Determination of Multiple Windows’ ON/OFF Status Section 3-1

208

11630 ’––

11640 ’Discrimination results terminal output process

11650 ’––

11660 *JUDGOUT

11670 FOR I=0 TO FIX((W.MAX–1)/32)

11680 DOUT W.JG&(I),0,32

11690 NEXT

11700 RETURN

3-2 Shape Inspection using Window Enlargement/Reduction

3-2-1 Introduction
The window enlargement/reduction functions are used to determine whether a
work piece’s shape matches the shape of a reference work piece. Perform the
operations below in menu mode beforehand.

1, 2, 3... 1. Set up a window in window plane 0 for use as a measurement region. (Do
not specify the entire screen, however.)

2. Set the binary level.

Once the program has been executed, the following operations can be used to
determine if a work piece is acceptable (OK) or unacceptable (NG):

Measurement Measure when the Console’s Enter Key is pressed or the STEP signal goes ON.
If the work piece is larger than the reference piece, the blurred area is measured.
If the work piece is smaller than the reference piece, omission inspection is mea-
sured. The blurred area and omission area are compared to the reference area
to determine whether the work piece is acceptable or not.

Reference Image Registration Register the reference image when the Console’s Shift+Enter Keys are pressed
or DI5 is ON and the STEP signal goes ON. A window for blurring inspection is
automatically drawn in window plane 7, and a window for omission inspection is
automatically drawn in window plane 6.

3-2-2 Program

10000 ’**

10010 ’ (c)Copyright OMRON Co. 1992

10020 ’ All Rights Reserved

10030 ’––

10040 ’ F300 Sample Program

10050 ’ Shape Inspection using Window Zooming

10060 ’ Useful for operations such as character identification.

10070 ’ Before program execution, set up (in menu mode) a window in

10080 ’ window plane 0 for use as a processing region.

10090 ’ Window plane 7: Blurring inspection

10100 ’ Window plane 6: Omission inspection

10110 ’ Window plane 0: Processing region

10120 ’**

10130 DCNT=3 ’Number of enlargements

10140 ECNT=1 ’Number of reductions

10150 JDG7=10 ’Number of pixels for determining blurring

Shape Inspection using Window Enlargement/Reduction Section 3-2

209

10160 JDG6=10 ’Number of pixels for determining omission

10170 BW=0 ’Pixels measured (0=black, 1=white)

10180 ’––

10190 ’Main process

10200 ’––

10210 *MAIN

10220 GOSUB *HWINIT

10230 GOSUB *INITIAL

10240 GOSUB *WINDAREA

10250 GOSUB *WINDSET

10260 ON INTR GOSUB *INTR1:INTR ON

10270 ON CONKEY GOSUB *INTR2:CONKEY ON

10280 WHILE (1)

10290 WEND

10300 ’––

10310 ’Initialization process

10320 ’––

10330 *INITIAL

10340 CONSOLE ,,0:LOCATE ,,0

10350 DISPLAY 31,0 ’Binary display within window

10360 CAMMODE 1 ’Output of frame buffer contents

10370 FLASH 2 ’Shutter with STEP synchronization

10380 WINDOW 0 ’Draws window of scene 0

10390 MMODE 7,BW,1 ’Measurement mode for blurring

10400 MMODE 6,NOT BW,1 ’Measurement mode for omission

10410 RETURN

10420 ’––

10430 ’Establishment of the measurement processing region

10440 ’––

10450 *WINDAREA

10460 FILTERIN 1:BACKDISP 1,0 ’Display window only

10470 WDISP –1,0,0:WDISP 0,1,1 ’Display plane 0

10480 LEVEL –1,511,511

10490 RMODE 0,0,1:MEASURE:LABEL:LSORT 8

10500 W.MAX=LNUM

10510 IF W.MAX<1 THEN

10520 PRINT ”WINDOWS ARE NOT SET.”

10530 END

10540 END IF

10550 LSORT 0

10560 W.X1=LDATA(1,7):W.Y1=LDATA(1,8) ’Set measurement region.

10570 W.X2=LDATA(1,9):W.Y2=LDATA(1,10)

10580 BOX W.X1, W.Y1, W.X2, W.Y2, 1,,,1

10590 FILTERIN 0:BACKDISP 0:SCNLUT 0

10600 WDISP –1,0,0:WDISP 6,1,1:WDISP 7,1,1

10610 RETURN

Shape Inspection using Window Enlargement/Reduction Section 3-2

210

10620 ’––

10630 ’Hardware initialization

10640 ’––

10650 *HWINIT

10660 CAMERA 0:CAMMODE 0:FLASH 1:FILTERIN 0:FILTER 0,1,0

10670 MASKBIT 2,0,0:MASKBIT 3,0,0:MASKBIT 4,0,0

10680 CLS 0:CLS 1:CLS 2:CLS 3:SBANK 1:CLS 4:SBANK 0:CLS 4

10690 LEVEL –1,128,255:WSCROLL 0,0:SSCROLL 0,0:WZOOM:SZOOM

10700 DIM LUTDATA0%(256),LUTDATA1%(256)

10710 FOR I=0 TO 255

10720 LUTDATA0%(I)=(I*160)/255:LUTDATA1%(I)=(I*192)/255:

10730 NEXT

10740 SETDLUT 0,LUTDATA0%:SETDLUT 1,LUTDATA1%

10750 ERASE LUTDATA0%,LUTDATA1%

10760 FOR I=0 TO 6

10770 SETDLVL I

10780 NEXT

10790 DISPLAY 16:WDISP –1,0,0:BACKDISP 0

10800 RETURN

10810 ’––

10820 ’STEP interrupt process

10830 ’––

10840 *INTR1

10850 IF PIN(5) THEN

10860 GOSUB *WINDSET ’Window setup

10870 ELSE

10880 GOSUB *MEAS ’Measurement

10890 END IF

10900 RETURN

10910 ’––

10920 ’Console Key interrupt process

10930 ’––

10940 *INTR2

10950 K=KEYIN(0)

10960 IF K=&H90 THEN GOSUB *WINDSET ’Shift+Enter Window setup

10970 IF K=&H10 THEN GOSUB *MEAS ’Enter Measurement

10980 RETURN

10990 ’––

11090 ’Measurement window setup

11010 ’––

11020 *WINDSET

11030 MASKBIT 2,0,1:CLS 2:MASKBIT 2,0,0 ’Deletes other than window 0

11040 *LLOOP

11050 RMODE 0,BW,1

11060 MEASURE

11070 LABEL

Shape Inspection using Window Enlargement/Reduction Section 3-2

211

11080 IF LNUM<1 THEN PRINT ”ERRO”:GOTO *LLOOP

11090 FOR I=1 TO LNUM

11100 LPUTIMG I,2,0,7 ’Draws figure in window mem.

11110 NEXT

11120 WDILA 7,W.X1, W.Y1, W.X2, W.Y2,,DCNT

11130 MASKBIT 2,0,&H7F ’Masks other than plane 7

11140 BOX W.X1, W.Y1, W.X2, W.Y2,2,0,XOR ’Reverses window memory

11150 MASKBIT 2,0,0

11160 FOR I=1 TO LNUM

11170 LPUTIMG I,2,0,6 ’Draws figure in window mem.

11180 NEXT

11190 WEROS 6,W.X1, W.Y1, W.X2, W.Y2,,ECNT

11200 RETURN

11210 ’––

11220 ’Measurement process

11230 ’––

11240 *MEAS

11250 LOCATE 0,0

11260 MEASURE

11270 A7=MDATA(7,0)

11280 IF A7>JDG7 THEN J7$=”NG” ELSE J7$=”OK”

11290 A6=MDATA(6,0)

11300 IF A6>JDG6 THEN J6$=”NG” ELSE J6$=”OK”

11310 PRINT USING ”Blurred pixels=###### @”:A7,J7$

11320 PRINT USING ”Omitted pixels=###### @”:A6,J6$

11330 RETURN

Shape Inspection using Window Enlargement/Reduction Section 3-2

213

Appendix A
Table of Error Messages

Error message Error
code

A Access denied
Application error (polish)
Application error (accum)

85
101
102

B Bad drive specification
Bad file name
Bad file number

70
56
52

C Can’t continue
CASE without END SELECT
CASE without SELECT
Channel number error
Checksum error
Compile timing error

17
124
121
202
117
119

D DEF FN without END DEF
Direct statement in file
Disk full
Disk I/O error
Disk offline
Division by zero
DO without LOOP
Duplicate definition
Duplicate label

134
57
68
64
62
11

135
10
31

E ELSE IF without END IF
ELSE IF without IF
ELSE without END IF
ELSE without IF
END DEF without DEF FN
END IF without IF
END SELECT without SELECT
END SUB without SUB
EXIT without DEF
EXIT without DO
EXIT without FOR
EXIT without SUB

129
125
130
126
120
127
122
133
138
141
140
139

F Feature not available
FIELD overflow
File already exist
File already open
File not found
File not open
File write protect
FOR without NEXT

33
50
65
54
53
60
61
26

I IF without END IF
Illegal direct
Illegal function call
Illegal jump
Input past end

128
12
5

137
55

L Line buffer overflow
Local variable overflow
LOOP without DO

23
131
136

M Missing operand 22

N NEXT without FOR
No RESUME

1
19

Appendix ATable of Error Messages

214

Error message Error
code

O Out of compile work space
Out of DATA
Out of memory
Out of string space
OV
Overflow

110
4
7

14
100

6

P Parameter overflow
Path not found
Path/File access error

118
76
75

R Rename across disks
RESUME without error
RETURN without GOSUB

73
20
3

S SELECT without END SELECT
Sequential I/O only
String too long
SUB without END SUB
Subscript out of range
Syntax error

123
59
15

132
9
2

T Type mismatch 13

U Undefined label
Undefined line number
Undefined user function
Unit error
Unprintable error

32
8

18
201
99

V Vision error 200

W WEND without WHILE
WHILE without WEND

30
29

215

Appendix B
Reserved Words

Reserved words

A ABS AKCNV$ ALL APPEND
ARC AS ASC ATN
ATTR$ AUTO AUTOLVL

B BACKDISP BASE BCOPY BCOPY2
BEEP BLOAD BOX BSAVE
BUSY

C CALL CAMCHK CAMERA CAMMODE
CANCEL CASE CDBL CHAIN
CHANGE CHDIR CHR$ CINT
CIRCLE CLEAR CLNG CLOSE
CLS COLOR COLOR@ COM
COMMON CONSOLE CONT COPY
COS CSNG CSRLIN CURSOR
CVD CVI CVL CVS

D DATA DATE$ DCASE DEF
DEFDBL DEFINE DEFLNG DEFSNG
DEFSTR DELETE DENY DEVICE
DGOTO DIM DIN DISPLAY
DNEXT DO DOUT DSA
DSKF

E EDIT ELLIPSE ELSE ELSEIF
END ENHANCE EOF ERASE
ERL ERR ERRMSG ERROR
ERROUT EVENTIN EXIT EXP

F FIELD FILES FILTDATA FILTER
FILTERIN FIND FIX FLASH
FN FOR FRE

G GATE GCOPY GCOPY2 GET
GET@ GETBLUT GETDLUT GETDLVL
GETLUT GOSUB GO GOTO

H HELP HEX$ HISTGRAM

I IF IMGLOAD IMGSAVE INKEY$
INPUT INPUT$ INSTR INT
INTR IPL

J JIS$

K KACNV$ KEXT$ KEY KEYIN
KILL KINPUT KINSTR KLEN
KMID$ KNJ$ KPLOAD KPOS
KTYPE

L LABLE LBOUND LCASE$ LDATA
LEFT$ LEN LET LEVEL
LFILES LHELP LINE LIST
LLIST LNUM LOAD LOC
LOCATE LOF LOG LOOP
LPOINT LPOS LPRINT LPUTIMG
LSET LSORT LTRIM$

M MASKBIT MDATA MDATA2 MEASURE
MENU MERGE MID$ MKDIR
MKD$ MKI$ MKL$ MKS$
MMODE MON

N NAME NEW NPIECE

Appendix BReserved Words

216

Reserved words

O OCT$ ON OFF OPEN
OPTION OUTPUT

P PEEK PIECE$ PIN POINT
POKE POLYGON POLYLINE POS
POUT PRINT PSET PUT
PUT@

R RANDOMIZE RDATA READ REM
RENUM REPEAT REPLACE RESTORE
RESUME RETURN RIGHT$ RMDIR
RMODE RND RNEXT RSET
RTRIM$ RUN RUNL

S SAVE SBACK SCAN SCANSET
SCNCAM SCNCALIB SCNJUDG SCNLEVEL
SCNLOAD SCNLUT SCNSAVE SDATA1
SDATA2 SEARCH SEGPTR SELECT
SET SETBLUT SETDLUT SETDLVL
SETLUT SFTBLUT SFTLUT SGN
SIN SPACE$ SPC SPCLOSE
SPLINE SQR SSCROLL STEP
STOP STR$ STRCHK STRING$
STRMODE SUB SWAP SYSTEM

T TAB TAN TIME$ TIMER
THEN TO TROFF TRON

U UBOUND UCASE$ UNTIL USING
USR USR0 USR1 USR2
USR3 USR4 USR5 USR6
USR7 USR8 USR9

V VAL VARPTR VDWAIT VIDEOIN
VENUS

W WAIT WDISP WEND WHILE
WIDTH WINDOW WPBIT WRITE
WSCROLL

217

Appendix C
Induction Functions

(P# = π = 3.14159265358979)

Function Induction formula

log a X LOG(X)/LOG(a)

sec X 1/COS(X)

cosec X 1/SIN(X)

cot X 1/TAN(X)

sin–1 X ATN(X/SQR(–X*X+1))

cos–1 X –ATN(X/SQR(–X*X+1))+P#/2

sec–1 X ATN(SQR(X*X–1)+(SGN(X)–1)*P#/2

cosec–1 X ATN(1/SQR(X*X–1)+(SGN(X)–1)*P#/2

cot–1 X –ATN(X)+P#/2

sinh X (EXP(X)–EXP(–X))/2

cosh X (EXP(X)+EXP(–X))/2

tanh X –EXP(–X)/(EXP(X)+EXP(–X))*2+1

sech X 2/(EXP(X)+EXP(–X))

cosech X 2/(EXP(X)–EXP(–X))

coth X EXP(–X)/(EXP(X)–EXP(–X))*2+1

sinh–1 X LOG(X+SQR(X*X+1))

cosh–1 X LOG(X+SQR(X*X–1))

tanh–1 X LOG((1+X)/(1–X))/2

sech–1 X LOG(SQR(–X*X+1)+1)+1/X

cosech–1 X LOG((SGN(X)*SQR(X*X+1)+1)/X))

coth–1 X LOG((X+1)/(X–1))/2

219

Index

�

ABS, 54

AKCNV$, 54

alphabetical listing, of version 2.00 functions & commands,
171

ARC, 54

arguments, 31

array operations, using ARRYFUNC, 175, 184

ARRYFUNC, 184

ASC, 55

ATN, 55

ATTR, 55

AUTO, 56

AUTOLVL, 56

�

BACKDISP, 56

BATCHK, 185

BCD, converting to binary, 180, 185

BCDTOBIN, 185

BCOPY, 57

BCOPY2, 58

BEDGE, 185

BEEP, 58

binary, converting to BCD, 180, 186

binary image planes, memory, 43

binary images
deleting exterior graphics, 188
eliminating isolated points, 188
enlarging in window memory, 200
expanding, 187
filling holes in, 193
logic operations between, 175, 186
processing, 174
reducing, 189
reducing in window memory, 201
reducing line thickness, 200
setting binary level, 195

binary level
setting, 195
setting range with version 2.00, 182

BINTOBCD, 186

block diagrams, 40

BMFUNC, 186

boot-up mode, setting, 194

BOX, 59

BUSY, 59

�

CALL, 60

CAMCHK, 60

CAMERA, 60

camera synchronization, setting with CAMSYNC, 181, 186

CAMMODE, 60

CAMSYNC, 186

CDBL, 61

CHAIN, 61

CHANGE, 62

character strings, 21

characters, 20

CHDIR, 62

CHR$, 63

CINT, 63

CIRCLE, 64

CLEAR, 65

CLNG, 65

CLOSE, 65

CLS, 66

COLOR, 66

COLOR@, 66

COM ON/OFF/STOP, 67

command
ARC, 54
ARRYFUNC, 184
AUTO, 56
BACKDISP, 56
BCOPY, 57
BCOPY2, 58
BEDGE, 185
BEEP, 58
BMFUNC, 186
BOX, 59
BUSY, 59
CALL, 60
CAMERA, 60
CAMMODE, 60
CAMSYNC, 186
CHAIN, 61
CHANGE, 62
CHDIR, 62
CIRCLE, 64
CLEAR, 65
CLOSE, 65

Index

220

CLS, 66
COLOR, 66
COLOR@, 66
COM ON/OFF/STOP, 67
COMMON, 67
CONKEY ON/OFF/STOP, 187
CONSOLE, 68
CONT, 68
CURSOR, 69
DATA, 72
DEF FN, 73
DEF FN...END DEF, 74
DEFDBL, 74
DEFINT, 74
DEFLNG, 75
DEFSNG, 75
DEFSTR, 75
DELETE, 76
DEVICE, 76
DILA, 187
DIM, 76
DISPLAY, 77
DO REPEAT–LOOP, 79
DO UNTIL–LOOP, 80
DO WHILE–LOOP, 80
DO–LOOP REPEAT, 78
DO–LOOP UNTIL, 78
DO–LOOP WHILE, 79
DOUT, 80
EDGRJECT, 188
EDIT, 81
ELIM, 188
ELLIPSE, 82
END, 82
ENHANCE, 83
ERASE, 83
EROS, 189
ERRMSG, 84
ERROR, 84
ERROUT, 85
EVENTIN, 85
EXIT DEF/DO/FOR/SUB, 86
FIELD #, 87
FILES, 88
FILTDATA, 88, 189
FILTER, 88
FILTERIN, 89
FILTSEL, 190
FIND, 89
FLASH, 90
FOR..TO..STEP–NEXT, 91
FORMAT, 191
GATE, 91
GCOPY, 92
GCOPY2, 92
GET #, 93
GET@, 93
GETBLUT, 94
GETDLUT, 94
GETDLVL, 95
GETLUT, 95
GETMDATA, 191
GMFUNC, 193
GOSUB, 95

GOTO, 96
HELP, 96
HELP ON/OFF/STOP, 96
HFILL, 193
HISTGRAM, 97
IF..GOTO–ELSE, 98
IF..THEN–ELSE, 98
IF..THEN–ELSEIF–ELSE–END IF, 99
IMGLOAD, 99
IMGSAVE, 100
INPUT, 101
INPUT WAIT, 102
INPUT#, 101
INTR ON/OFF/STOP, 104
IPL, 104, 194
KEY, 106
KEY LIST, 106
KEY ON/OFF/STOP, 106
KILL, 107
KINPUT, 108
KPLOAD, 110
LABEL, 111
LET, 113
LEVEL, 114, 195
LINE, 114
LINE INPUT, 115
LINE INPUT WAIT, 116
LINE INPUT#, 116
LIST, 116
LOAD, 117
LOCATE, 118
LPUTIMG, 119
LSET, 120
LSORT, 120, 195
MASK3, 195
MASKBIT, 120
MEASURE, 122
MENU, 122
MERGE, 122
MKDIR, 124
MMODE, 125
MWMEAS, 196
MWSET, 197
NAME, 126
NEW, 126
ON COM GOSUB, 127
ON CONKEY GOSUB, 197
ON ERROR GOTO, 128
ON GOSUB, 130
ON GOTO, 131
ON HELP GOSUB, 128
ON INTR GOSUB, 128
ON KEY GOSUB, 129
ON STOP GOSUB, 129
ON TIME$ GOSUB, 130
OPEN(1), 131
OPEN(2), 132
OPTION BASE, 132
POLYGON, 134
POLYLINE, 134
POUT, 135
PRINT, 135
PRINT #, 137
PRINT USING, 136
PRINT# USING, 138

Index

221

PSET, 138
PUT #, 139
PUT@, 139
RANDOMIZE, 140
READ, 140
REM, 141
RENUM, 141
REPLACE, 141
RESTORE, 142
RESUME, 142
RETURN, 142
RMDIR, 143
RMODE, 144
RSET, 145
RUN, 145
SAVE, 146
SBANK, 146
SCAN, 147
SCANSET, 147
SCNCALIB, 148
SCNLOAD, 149
SCNLUT, 149
SCNSAVE, 149
SELECT...CASE–CASEELSE–END SELECT, 151
SET, 151
SETBLUT, 152
SETDLUT, 152
SETDLVL, 153
SETLUT, 153
SFTBLUT, 153
SFTLUT, 154
SOBEL, 199
SPCLOSE, 157
SPLINE, 157
SSCROLL, 158
STOP, 158
STOP ON/OFF/STOP, 159
STRMODE, 160
SUB–END SUB, 161
SWAP, 161
SZOOM, 200
THIN, 200
TIME$ ON/OFF/STOP, 163
TROFF, 164
TRON, 164
VDWAIT, 165
VIDEOIN, 165
WDILA, 200
WDISP, 166
WEROS, 201
WHILE–WEND, 166
WINDOW, 167
WRITE, 167
WRITE #, 168
WSCROLL, 168
WZOOM, 201

command–function, DATE$, 73

COMMON, 67

compile work space, changes in version 2.00, 172

CONKEY ON/OFF/STOP, 187

CONSOLE, 68

console key, interrupts, 180, 187, 197

constants, 21
character, 21

character strings, 21
numeric, 22

integer, 22
long integer, 22
real number, 23

CONT, 68

conversion, numeric data, 25

COS, 69

criteria, checking with SCNJUDGE, 177, 198

CSNG, 69

CSRLIN, 69

CURSOR, 69

CVD, 70

CVI, 71

CVL, 71

CVS, 71

�

DATA, 72

data, measured, flow, 41

DATE$, 73

DEF FN, 73

DEF FN...END DEF, 74

DEFDBL, 74

DEFINT, 74

DEFLNG, 75

DEFSNG, 75

DEFSTR, 75

DELETE, 76

DEVICE, 76

DILA, 187

DIM, 76

DIN, 77

DISPLAY, 77

display LUT, 39

DO REPEAT–LOOP, 79

DO UNTIL–LOOP, 80

DO WHILE–LOOP, 80

DO–LOOP REPEAT, 78

DO–LOOP UNTIL, 78

DO–LOOP WHILE, 79

DOUT, 80

drawing density, 46

Index

222

drawing mode, 46

DSA, 81

DSKF, 81

�

EDGRJECT, 188

EDIT, 81

ELIM, 188

ELLIPSE, 82

END, 82

ENHANCE, 83

EOF, 83

ERASE, 83

ERL, 84

EROS, 189

ERR, 84

ERRMSG, 84

ERROR, 84

error messages, table, 213

ERROUT, 85

EVENTIN, 85

EXIT DEF/DO/FOR/SUB, 86

EXP, 87

expressions, 29
character, 29
functions, 31
logical, 29
numeric, 29
relational, 29

�

FIELD #, 87

file delimiters, changes in version 2.00, 172

FILES, 88

fill measurement, 50

FILTDATA, 88, 189

FILTER, 88

filter, 39
3x3 mask filtering, 195
selecting filtering functions, 177, 190
setting line filter factors, 189

FILTERIN, 89

FILTSEL, 190

FIND, 89

FIX, 90

FLASH, 90

FOR..TO..STEP–NEXT, 91

FORMAT, 191

FRE, 91

function
ABS, 54
AKCNV$, 54
ASC, 55
ATN, 55
ATTR, 55
AUTOLVL, 56
BATCHK, 185
BCDTOBIN, 185
BINTOBCD, 186
CAMCHK, 60
CDBL, 61
CHR$, 63
CINT, 63
CLNG, 65
COS, 69
CSNG, 69
CSRLIN, 69
CVD, 70
CVI, 71
CVL, 71
CVS, 71
DIN, 77
DSA, 81
DSKF, 81
EOF, 83
ERL, 84
ERR, 84
EXP, 87
FIX, 90
FRE, 91
GETVER, 192
HEX$, 97
INKEY$, 100
INPUT$, 102
INSTR, 103
INT, 103
JIS$, 105
KACNV$, 105
KEXT$, 105
KEYIN, 107
KINSTR, 108
KLEN, 108
KMID$, 109
KNJ$, 109
KPOS, 110
KTYPE, 111
LBOUND, 112
LCASE$, 112
LDATA, 112
LEFT$, 113
LEN, 113
LNUM, 117
LOC, 117
LOF, 118
LOG, 118
LPOINT, 119
LTRIM$, 120
MDATA, 121
MDATA2, 121
MKD$, 123

Index

223

MKI$, 124
MKL$, 124
MKS$, 125
NPIECE, 126
OCT$, 127
PIECE$, 133
PIN, 133
POINT, 133
POS, 135
RDATA, 140
RIGHT$, 143
RND, 144
RTRIM$, 145
RUNL, 146
RUNL2, 198
SCNCAM, 148
SCNJUDGE, 198
SCNLEVEL, 148
SCNSTAND, 199
SDATA1, 149
SDATA2, 150
SEARCH, 150
SGN, 155
SIN, 155
SPACE$, 156
SPC, 156
SQR, 158
STR$, 159
STRCHK, 160
STRING$, 160
TAB, 161
TAN, 162
UBOUND, 164
UCASE$, 164
VAL, 165

function, command
MID$, 123
TIME$, 162
TIMER, 163

functions, 31
induction, 217

�

GATE, 91

GCOPY, 92

GCOPY2, 92

GET #, 93

GET@, 93

GETBLUT, 94

GETDLUT, 94

GETDLVL, 95

GETLUT, 95

GETMDATA, 191

GETVER, 192

GMFUNC, 193

GOSUB, 95

GOTO, 96

gray-scale images, logic operations between, 193

�

HELP, 96

HELP ON/OFF/STOP, 96

HEX$, 97

HFILL, 193

HISTGRAM, 97

	

IF..GOTO–ELSE, 98

IF..THEN–ELSE, 98

IF..THEN–ELSEIF–ELSE END IF, 99

image cut-off, 50

images
cameras

display status, 40
measurement status, 40

data flow, 36
display LUT, 39
filter, 39
LUT, 38
memory

display status, 41
measurement status, 41

VRAM, 36
character memory, 36
graphic memory, 37
image memory, 37
shading memory, 38
window memory, 37

IMGLOAD, 99

IMGSAVE, 100

induction functions, 217

INKEY$, 100

INPUT, 101

INPUT WAIT, 102

INPUT#, 101

INPUT$, 102

inspection, for character blurring/omission, 174

INSTR, 103

INT, 103

integer constants, 22
format

decimal, 22
hexadecimal, 22
octal, 22

interrupts, 32
console key, 180, 187, 197

Index

224

INTR ON/OFF/STOP, 104

IPL, 104, 194

JIS$, 105

�

KACNV$, 105

KEXT$, 105

KEY, 106

KEY LIST, 106

KEY ON/OFF/STOP, 106

KEYIN, 107

KILL, 107

KINPUT, 108

KINSTR, 108

KLEN, 108

KMID$, 109

KNJ$, 109

KPLOAD, 110

KPOS, 110

KTYPE, 111

�

LABEL, 111

labelling, 48
renumbering labels, 176, 195

labels, 32

LBOUND, 112

LCASE$, 112

LDATA, 112

LEFT$, 113

LEN, 113

LET, 113

LEVEL, 114, 195

LINE, 114

LINE INPUT, 115

LINE INPUT WAIT, 116

LINE INPUT#, 116

lines
definition, 20
format, 20
numbers, 20
statements, 20

LIST, 116

LNUM, 117

LOAD, 117

LOC, 117

LOCATE, 118

LOF, 118

LOG, 118

long integer constants, 22
format

decimal, 22
hexadecimal, 23
octal, 22

LPOINT, 119

LPUTIMG, 119

LSET, 120

LSORT, 120, 195

LTRIM$, 120

LUT, 38

mask bits, memory, 43

MASK3, 195

MASKBIT, 120

MDATA, 121

MDATA2, 121

MEASURE, 122

measurement
fill, 50
scan, 51

memory
binary image planes, 43
frame, 43

image, 37
shading, 38
window, 37

mask bits, 43
plane, 43

character, 36
graphic, 37

Memory Card
checking battery voltage, 180, 185
formatting, 180, 191

MENU, 122

MERGE, 122

MID$, 123

MKD$, 123

MKDIR, 124

MKI$, 124

MKL$, 124

MKS$, 125

Index

225

MMODE, 125

multiple-window functions
measurements, 196
registering windows, 197
use in sample program, 204
version 2.00 addition, 172

MWMEAS, 196

MWSET, 197

�

NAME, 126

NEW, 126

NPIECE, 126

�

OCT$, 127

ON COM GOSUB, 127

ON CONKEY GOSUB, 197

ON ERROR GOTO, 128

ON GOSUB, 130

ON GOTO, 131

ON HELP GOSUB, 128

ON INTR GOSUB, 128

ON KEY GOSUB, 129

ON STOP GOSUB, 129

ON TIME$ GOSUB, 130

OPEN(1), 131

OPEN(2), 132

operations
priority, 32
screen, 35

operators, 27
arithmetic, 27
logical, 28
relational, 28

OPTION BASE, 132

�

PIECE$, 133

PIN, 133

planes
frame, 43
memory, 43

POINT, 133

POLYGON, 134

POLYLINE, 134

POS, 135

POUT, 135

PRINT, 135

PRINT #, 137

PRINT USING, 136

PRINT# USING, 138

programs, samples for version 2.00, 203

PSET, 138

PUT #, 139

PUT@, 139

�

RANDOMIZE, 140

raw images
logic operations between, 175
processing, 175

RDATA, 140

READ, 140

real number constants, 23
format

double-precision, 23
single-precision, 23

reference image data, checking with SCNSTAND, 178, 199

REM, 141

RENUM, 141

REPLACE, 141

reserved words, table, 215

RESTORE, 142

RESUME, 142

RETURN, 142

RIGHT$, 143

RMDIR, 143

RMODE, 144

RND, 144

RS-232C, standard I/O settings, 181

RSET, 145

RTRIM$, 145

RUN, 145

run length, 47
detailed, 48
simple, 47

using for various calculations, 179, 198

RUNL, 146

RUNL2, 198

Index

226

�

sample programs, for version 2.00, 203

SAVE, 146

SBANK, 146

SCAN, 147

scan measurement, 51

SCANSET, 147

SCNCALIB, 148

SCNCAM, 148

SCNJUDGE, 198

SCNLEVEL, 148

SCNLOAD, 149

SCNLUT, 149

SCNSAVE, 149

SCNSTAND, 199

scrolling, 49
shading, 49
window, 49

SDATA1, 149

SDATA2, 150

SEARCH, 150

SELECT...CASE–CASEELSE–END SELECT, 151

SET, 151

SETBLUT, 152

SETDLUT, 152

SETDLVL, 153

SETLUT, 153

SFTBLUT, 153

SFTLUT, 154

SGN, 155

shading compensation
frame memory, 38
scrolling, 49

shading memory, zooming, 200

SIN, 155

SOBEL, 199

SPACE$, 156

SPC, 156

SPCLOSE, 157

specifications, changes in version 2.00, 172

SPLINE, 157

SQR, 158

SSCROLL, 158

statements, 20

STOP, 158

STOP ON/OFF/STOP, 159

STR$, 159

STRCHK, 160

STRING$, 160

STRMODE, 160

SUB–END SUB, 161

SWAP, 161

symbols, 20

syntax, 19

SZOOM, 200

�

TAB, 161

TAN, 162

THIN, 200

TIME$, 162

TIME$ ON/OFF/STOP, 163

TIMER, 163

TROFF, 164

TRON, 164

�

UBOUND, 164

UCASE$, 164

�

VAL, 165

variables, 23
arrays, 24
names, 24
reserved words, 24
system, 31
type declarators, 23

VDWAIT, 165

version, obtaining with GETVER, 192

version 2.00
alphabetical listing of functions & commands, 171
BCD/binary conversion, 180
binary image processing, 174
binary level setting range, 182
calculations using simple run length, 179
camera synchronization, 181
changes in specifications, 172
checking menu settings, 177
console key interrupts, 180
filtering selection, 177
high-speed array operations, 175
image-to-image calculations, 175

Index

227

loading/saving programs through RS-232C, 181
memory card operations, 180
multiple-window functions, 172
obtaining system information, 181
raw image processing, 175
renumbering labels, 176
standard I/O settings, 181
summary of additional capabilities, 170
window enlargement/reduction, 174
zooming window & shading memory, 176

VIDEOIN, 165

VRAM, 36
character memory, 36
graphic memory, 37
image memory, 37
shading memory, 38
window memory, 37

�

WDILA, 200

WDISP, 166

WEROS, 201

WHILE–WEND, 166

WINDOW, 167

window memory, zooming, 201

windows, 44
frame memory, 37
paint, 45
pattern matching, 45
planes, 44
scrolling, 49
zooming, 176

WRITE, 167

WRITE #, 168

WSCROLL, 168

WZOOM, 201

229

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. Z92-E1-2

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 October 1992 Original production

1A March 1993 Page 38: VRAM3 description has been changed from window memory to
image memory.

Pages 67, 68: Sentence added to COMMON example section and the program
example has been altered.

Page 76: Format of DIM has been corrected.

Page 77: Last sentence of DIN description has been corrected.

Page 100: Compression function specification has been corrected for
IMGSAVE.

Pages 121, 122: Description for MDATA2 has been changed.

Page 132: S parameter has been added to the table.

Page 173: Induction formulas have been changed for functions cosec–1 X,
coth X, tanh–1 X, sech–1 X, and coth–1 X.

2 March 1994 Version 2.00 of the F300 Visual Inspection System (OVL) added as Part II,
Sections 1 to 3.

Page 73: Format for the description corrected.

Page 74: DEF FN...END DEF example corrected.

Page 87: Middle paragraph for EXP description corrected.

Page 102: Middle paragraph for INPUT WAIT description corrected.

Page 116: Middle paragraph for LINE INPUT WAIT description corrected.
LINE INPUT# description corrected.

Page 142: Middle paragraph for RESUME description corrected.

Page 149: Format and middle paragraph description corrected for SCNLOAD .

Page 151: Header and format for SELECT...CASE–CASE ELSE–END
SELECT corrected.

Page 160: Format for STRING$ corrected.

