F300 Visual Inspection System
OMRON Vision Language (OVL)

Reference Manual

Revised March 1994

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to head precautions can result in injury to people or dam-
age to the product.

DANGER! Indicates information that, if not heeded, is likely to result in loss of life or serious
injury.

WARNING Indicates information that, if not heeded, could possibly result in loss of life or
serious injury.

Caution Indicates information that, if not heeded, could result in relative serious or minor
injury, damage to the product, or faulty operation.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “PLC” means Programmable Controller (Programmable Logic Controller) and is not
used as an abbreviation for anything else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1992

All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

Vi

TABLE OF CONTENTS
PART |, Version 1.00

SECTION 1

List of Commandsand Functions 1
1-1 OVL Alphabetical Listot e e 2
1-2 OVL INStruction List e e e 11

SECTION 2

OVL SYNEAX .o oe e e e e e e e e 19
2-1 LINEFOrMAEL e 20
2-2 OVL Charactersand Symbolso 20
2-3 CONSIANTSot 21
2-4 Variables . .o e 23
2-5 TYPECONVEISION . v ittt et e et e e e e e e e e 25
2-6 Operations and EXPreSSiONS . ..ottt ettt e e 27
2-7 IEITUPES . ot 32
2-8 LaAEIS . 32

SECTION 3

SCreen Operations oottt e 35
3-1 Flowof ImageDataoou it 36
3-2 Display and Measurement Block Diagramsot 40
3-3 Howof Measured Dataot e 41
34 Planeand FrameMemoryttt e 43
35 WINAOWS . . oot e 44
3-6 Drawing Density and DrawingModest 46
37 RUN NG . . 47
3-8 Labelling 48
39 SCrOIING . oot 49
3-10 Fill MeaSUreMENt oot e e e e 50
311 Image CUt-Off e e 50
3-12 SCan MEESUrEIMENLE oottt et et et e e e 51

SECTION 4

Reference 53

vii

viii

PART I, Version 2.00

SECTION 1

OVL Version 2.00 Improvements 169
1-1 Overview of IMProVEMENLSottt e e e 170
1-2 Additional OVL Capabilities e 172

SECTION 2

Reference 183

SECTION 3

SamplePrograms 203
3-1 Determination of Multiple Windows ON/OFF Statuscivinn... 204
3-2 Shape Inspection using Window Enlargement/Reduction 208

AppendiCes 213
A, Tableof Error MESSagES . . o ittt ittt et e 213
B. Resarved WOrds 215
C. INdUCiON FUNCLIONS . . .ot e e e e e e 217

INdeX e 219

Revison History i 229

About this Manual:

This manual describes the OMRON Vision Language (OVL) used with the F300 Visual Inspection System
and includes the sections described below.

Please read this manual completely and be sure you understand the information provided before attempt-
ing to operate the F300 Visual Inspection System and use the OVL.

PART |
Version 1.00

Section 1 provides a listing of commands and functions. There is a list ordered alphabetically and a list
ordered by instructions.

Section 2 provides the basic OVL syntax required before programming.

Section 3 provides general information on screen manipulation.

Section 4 provides detailed information on the commands and functions. Examples are also provided.
PART Il

Version 2.00

Section 1 describes the additional functions and improvements found in OVL Version 2.00.

Section 2 provides detailed information on the new Version 2.00 commands and functions. Examples are
also provided.

Section 3 provides sample programs using the new Version 2.00 commands and functions.

This manual also contains three appendices. Appendix A contains a listing of error messages, Appen-
dix B contains a listing of reserved words, and Appendix C contains a listing of induction functions.

WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

PART |
Version 1.00

SECTION 1
List of Commands and Functions

This section provides alisting of commands and functions. Thereisalist ordered alphabetically and alist ordered by usage.

1-1 OVL Alphabetical List e e e e 2
1-2 OVL INSITUCHION LISt ..ottt e e e e e e e 11

OVL Alphabetical List Section 1-1
1-1 OVL Alphabetical List
Command/Function Operation Instruction Type Page
ABS Determines an absolute value. Calculation Function 54
AKCNV$ Converts 1-byte characters to 2-byte Japanese character string | Function 54
characters. operation
ARC Draws an arc. Graphic control Command 54
A [ASC Determines the character code. 1-byte'character string Function 55
operation
ATN Determines the arctangent (arctan) of a Calculation Function 55
value.
ATTR$ Retermines the write protect attribute of a | File control Function 55
ile.
AUTO Automatically generates line numbers. Program editing Command 56
AUTOLVL Determines the binary level. Image processing Function 56
BACKDISP Sets the image display outside the Display control Command 56
window.
BCOPY Copies a binary image. Special graphic display Command 57
control
B |BCOPY2 Makes enlarged and reduced copies of Special graphic display Command 58
binary images. control
BEEP Turns the buzzer on and off. Special Command 58
BOX Draws a rectangle. Graphic control Command 59
BUSY Controls BUSY signal output status. 1/0 port I/O control Command 59
CALL Calls a structural subroutine. General Command 60
CAMCHK Determines the camera connection status. | Camera/strobe control Function 60
CAMERA Switches cameras. Camera/strobe control Command 60
CAMMODE Selects the image output from a Camera Camera/strobe control Command 60
I/F Unit.
CDBL Converts to a double-precision value. Calculation Function 61
CHAIN Transfers control to a specified program. General Command 61
CHANGE Changes the measuring conditions. Scene Command 62
C |CHDIR Changes the current directory. File operation Command 62
CHR$ Converts a character code to a character. 1-by_te character string op- | Function 63
eration
CINT Converts to an integer. Calculation Function 63
CIRCLE Draws a circle. Graphic control Command 64
CLEAR Initializes variables. Memory management Command 65
CLNG Converts to a long integer. Calculation Function 65
CLOSE Closes an open file. File control Command 65
CLS Clears characters and graphics. Graphic control Command 66
COLOR Changes the character attributes. Text display control Command 66
COLOR@ Changes the character attributes within a | Text display control Command 66
specified region.
COM ON/OFF/ Controls interrupts from the RS-232C. RS-232C communication Command 67
STOP
COMMON Transfers variables. General Command 67
CONSOLE Sets the text display mode. Text display control Command 68

OVL Alphabetical List Section 1-1
Command/Function Operation Instruction Type Page
CONT Continues execution of a program. Program execution control | Command 68
COoSs Determines the cosine of an angle. Calculation Function 69
CSNG Converts to a single-precision value. Calculation Function 69
CSRLIN Determines the cursor line position. Text display control Function 69
C |CURSOR Draws a cross cursor. Graphic control Command 69
CVvD Converts an 8-byte character string to a Calculation Function 70
double-precision real number.
CvI Converts a 2-byte character string to an Calculation Function 71
integer.
CVL Converts a 4-byte character string to a Calculation Function 71
long integer.
CVS Converts a 4-byte character string to a Calculation Function 71
single-precision real number.
DATA Defines the data read with the READ com- | General Command 72
mand.
DATES$ Displays and sets the date. Time/date control Function, 73
Command
DEF FN Defines a user function. General Command 73
DEF FN Defines a user function block. General Command 74
END DEF
DEFDBL Declares variables as double-precision General Command 74
real number variables.
DEFINT Declares variables as integers. General Command 74
DEFLNG Declares variables as long integers. General Command 75
DEFSNG Declares variables as single-precision real | General Command 75
number variables.
DEFSTR Declares variables as character variables. | General Command 75
D |[DELETE Deletes part of a program. Program editing Command 76
DEVICE Specifies the input and output devices. Special Command 76
DIM Defines an array variable. General Command 76
DIN Reads data from an input port. 1/0O port I/O control Function 77
DISPLAY Sets the display image. Display control Command 77
DO...LOOP Repeats a loop specified number of times. | General Command 78
REPEAT
DO...LOOP Repeats a loop until a condition is fulfilled. | General Command 78
UNTIL
DO...LOOP Repeats a loop while a condition is General Command 79
WHILE fulfilled.
DO Repeats a loop specified number of times. | General Command 79
REPEAT LOOP
DO Repeats a loop until a condition is fulfilled. | General Command 80
UNTIL LOOP
DO Repeats a loop while a condition is General Command 80
WHILE LOOP fulfilled.
DOUT Outputs data to an output port. 1/O port I/O control Command 80
DSA Reads the status of the DSA signal. 1/0O port I/O control Function 81
DSKF Determines the free space in the memory | File control Function 81
card.

OVL Alphabetical List Section 1-1
Command/Function Operation Instruction Type Page
EDIT Selects the mode to edit lines of the Program editing Command 81
program.

ELLIPSE Draws an ellipse. Graphic control Command 82

END Stops program execution. General Command 82

ENHANCE Creates LUT data for contrast Image processing Command 83
modification.

EOF Determines the end of the file. File control Function 83

ERASE Deletes an array variable. General Command 83

E |ERL Determines the line number where an Error control Function 84

error occurred.

ERR Determines the error code. Error control Function 84

ERRMSG Defines the operation when an error Error control Command 84
occurs.

ERROR Generates a pseudo-error. Error control Command 84

ERROUT Controls the error signal output. 1/0 port /O control Command 85

EVENTIN Sets the image input synchronized with Camera/strobe control Command 85
events.

EXIT DEF/ Exits a control block. General General 86

DO/FOR/SUB

EXP Determines the natural number e raised to | Calculation Function 87
an exponential power.

FIELD# Allocates the variable areas. File control Command 87

FILES Displays file names. File operation Command 88

FILTDATA Specifies the line filter factors. Image processing Command 88

FILTER Sets the image filtering function. Image processing Command 88

FILTERIN Selects image input to the filter. Image processing Command 89

FIND Searches for a character string in a Program editing Command 89
program.

F [FIX Rounds down a value to an integer. Calculation Function 90
FLASH Controls the strobe and shutter function. Camera/strobe control Command 90
FOR...TO... Repeatedly executes instructions. General Command 91
STEP ~ NEXT
FRE Determines the free memory size. Memory management Function 91
GATE Controls the GATE signal. 1/0O port /O control Command 91
GCOPY Copies the raw image in VRAM. Special graphic display Command 92

control
GCOPY2 Makes enlarged and reduced copies of the | Special graphic display Command 92
raw image. control
GET# Reads data from a random file. File control Command 93
GET@ Reads image data to VRAM. Graphic control Command 93

G |GETBLUT Reads the binary LUT data. Image processing Command 94
GETDLUT Reads the display LUT data. Display control Command 94
GETDLVL Determines the display level of the image. | Display control Function 95
GETLUT Reads the filter LUT data. Image processing Command 95
GOSUB Branches to a specified subroutine. General Command 95
GOTO/GO TO Unconditionally jumps to a specified line. General Command 96

OVL Alphabetical List Section 1-1
Command/Function Operation Instruction Type Page
HELP Displays help messages. Program editing Command 96

H |[HELP Disables, enables, or stops interrupts from | Key control Command 96
ON/OFF/STOP | the HELP Key.

HEX$ Converts a numeric expression to 1-byte character string op- | Function 97
hexadecimal. eration

HISTGRAM Reads a density histogram. Image processing Command 97

IF...GOTO ~ Evaluates a condition. General Command 98

ELSE

IF. .. THEN ~ Evaluates a condition. General Command 98

ELSE

IF... THEN ~ Evaluates a condition. General Command 99

ELSEIF ~ ELSE

~END IF

IMGLOAD Loads image data to VRAM. Special Command 99

IMGSAVE Saves image data from VRAM. Special Command 100

INKEY$ Determines the character input from the Key control Function 100
keyboard.

I |INPUT Assigns data to a variable. Key control Command 101
INPUT# Reads data from a file. File control Command 101
INPUT$ Reads a specified length of data. File control Function 102
INPUT WAIT Inputs data with a time limitation. Key control Command 102
INSTR Determines the position of a specified 1-byte character string Function 103

character. operation
INT Rounds down a value to an integer. Calculation Function 103
INTR Disables, enables, or stops interrupts with | 1/O port I/O control Command 104
ON/OFF/STOP the STEP signal.
IPL Sets the OVL boot-up mode. Special Command 104

J |JIS$ Determines the Shift JIS code. Japanese character string | Function 105

operation
KACNV$ Converts from wide to standard Japanese character string | Function 105
characters. operation
KEXT$ Selects a character. Japanese character string | Function 105
operation
KEY Assigns a character string to function Key control Command 106
keys.
KEY LIST Displays the function key settings. Program editing Command 106

K |KEY Disables, enables, or stops interrupts from | Key control Command 106
ON/OFF/STOP the function keys.

KEYIN Reads the status of the console keys. Key control Function 107

KILL Deletes a file. File operation Command 107

KINPUT Input data in the Japanese input mode. Key control Command 108

KINSTR Determines the position of a 2-byte Japanese character string | Function 108
character. operation

KLEN Determines the length of a character string | Japanese character string | Function 108
including 2-byte characters. operation

KMID$ Extracts part of a character string Japanese character string | Function 109
including 2-byte characters. operation

KNJ$ Determines a 2-byte character. Japanese character string | Function 109
operation

OVL Alphabetical List Section 1-1
Command/Function Operation Instruction Type Page
KPLOAD Registers a 2-byte character pattern. Japanese character string | Command 110
operation
K |KPOS Determines the position of a character in a | Japanese character string | Function 110
character string. operation
KTYPE Determines the type of a character. Japanese character string | Function 111
operation
LABEL Carries out labelling. Measurement Command 111
LBOUND Determines the lower boundary of an General Function 112
array dimension qualifier.
LCASES Converts uppercase letters to-lower case | 1-byte character string Function 112
letters. operation
LDATA Measures data for the labelled image. Measurement Function 112
LEFTS Extracts the left end of the specified 1-byte character string Function 113
character string. operation
LEN Determines the length of a character 1-byte character string Function 113
string. operation
LET Assigns an expression to a variable. General Command 113
LEVEL Sets the binary level. Image processing Command 114
LINE Draws a straight line. Graphic control Command 114
LINE INPUT Assigns a line of data to a character Key control Command 115
variable.
L |LINE INPUT Inputs data with a time limitation. Key control Command 116
WAIT
LINE INPUT# Reads data from a file. File control Command 116
LIST Displays the program contents. Program editing Command 116
LNUM Determines the number of labelled Measurement Function 117
images.
LOAD Loads a program. Program editing Command 117
LOC Determines the current position in a File control Function 117
specified file.
LOCATE Sets the cursor position. Text display control Command 118
LOF Determines the size of a file. File control Function 118
LOG Determines natural logarithms. Calculation Function 118
LPOINT Determines the label number at a Measurement Function 119
specified position.
LPUTIMG Draws a labelled image. Measurement Command 119
LSET Writes left-justified character data. File control Command 120
LSORT Renumbers labels in order of area. Measurement Command 120
LTRIMS$ Deletes spaces to the left of a character 1-byte character string Function 120
string. operation
MASKBIT Disables writing to specific planes. Special graphic display Command 120
control
MDATA Reads the measured results 1. Measurement Function 121
M | MDATA2 Reads the measured results 1. Measurement Function 121
MEASURE Conducts measurements. Measurement Command 122
MENU Returns to the Menu mode. Special Command 122
MERGE Merges a program. Program editing Command 122

OVL Alphabetical List Section 1-1
Command/Function Operation Instruction Type Page
MID$ Extracts part of a character string. 1-byte character string Function, 123
operation Command
MKD$ Converts a double-precision value to a 1-byte character string Function 123
character string. operation
MKDIR Creates a new directory. File operation Command 124
MKI$ Converts an integer to a character string. | 1-byte character string Function 124
operation
M | MKL$ Converts a long integer to a character 1-byte character string Function 124
string. operation
MKS$ Converts a single-precision value to a 1-byte character string Function 125
character string. operation
MMODE Sets the measurement mode. Measurement Command 125
NAME Renames files. File operations Command 126
N | NEW Deletes a program from memory. Program execution control | Command 126
NPIECE Determines the number of smaller 1-byte character string Function 126
character strings. operation
OCTS$ Converts a number to an octal character 1-byte character string Function 127
string. operation
ON COM GO- Defines the RS-232C interrupt jump RS-232C communication | Command 127
SuUB destination.
ON ERROR Defines the error processing routine. Error control Command 128
GOTO
ON HELP GO- Defines the HELP Key interrupt Key control Command 128
SuUB subroutine.
ON INTR GO- Defines the STEP signal interrupt 1/0O port I/O control Command 128
SuUB subroutine.
O [ONKEY GO- Defines the function key interrupt Key control Command 129
SUB subroutine.
ON STOP GO- Defines the STOP Key interrupt Key control Command 129
SUB subroutine.
ON TIMES$ GO- | Defines the timer interrupt subroutine. Time/date control Command 130
SUB
ON...GOSuB Branches to a subroutine on a specified General Command 130
value.
ON...GOTO Jumps program operation on a specified General Command 131
value.
OPEN (1) Opens afile. File control Command 131
OPEN (2) Opens the RS-232C port. RS-232C communication Command 132
OPTION BASE Declares minimum value of the array General Command 132
qualifier.
PIECES$ Returns partial character strings. 1-byte character string Function 133
operation
PIN Reads the bit status of an input port. 1/0 port I/O control Function 133
P |POINT Determines the density at specified Graphic control Function 133
coordinates.
POLYGON Draws a polygon. Graphic control Command 134
POLYLINE Draws a polyline. Graphic control Command 134
POS Determines the current cursor column Text display control Function 135
position.
POUT Controls the bit status of an output port. 1/0 port I/O control Command 135

OVL Alphabetical List Section 1-1

Command/Function Operation Instruction Type Page
PRINT Displays data on the text display. Text display control Command 135
PRINT USING Displays formatted data on the text Text display control Command 136

display.
P |PRINT# Writes data to a sequential access file. File control Command 137
PRINT# USING | Writes formatted data to a sequential File control Command 138
access file.
PSET Draws a point. Graphic control Command 138
PUT# Writes data to a random access file. File control Command 139
PUT@ Draws a pattern in VRAM. Graphic control Command 139
RANDOMIZE Initializes random number generation. General Command 140
RDATA Reads the detailed run length data. Measurement Function 140
READ Reads data. General Command 140
R |REM Inserts remarks into the program. General Command 141
RENUM Renumbers program lines. Program editing Command 141
REPLACE Replaces a character string. Program editing Command 141
RESTORE Specifies the line with the DATA General Command 142
statement.

RESUME Restarts the operation before the error Error control Command 142
occurred.

RETURN Returns operation from a subroutine. General Command 142

RIGHTS$ Extracts the right end of the specified 1-byte character string Function 143
character string. operation

RMDIR Deletes a directory. File operation Command 143

RMODE Sets the measurement mode for detailed | Measurement Command 144
run length data.

RND Generates a random number. Calculation Function 144

RSET Writes right-justified character data. File control Command 145

RTRIM$ De_letes spaces to the right of a character 1-byte_character string Function 145
string. operation

RUN Runs a program. Program execution control | Command 145

RUNL Reads the simple run length data. Measurement Function 146

SAVE Saves a program. Program editing Command 146

SBANK Selects the shading memory bank Special graphic display Command 146
number. control

SCAN Conducts scan measurement. Measurement Command 147

SCANSET Sets the conditions for scan Measurement Command 147
measurement.

S | SCNCALIB Sets the calibration data. Scene Command 148
SCNCAM Reads the camera data for a scene. Scene Function 148
SCNLEVEL Determines the binary level of a scene. Scene layout problem Function 148
SCNLOAD Loads the scene data. Scene Command 149
SCNLUT Sets the binary level of a scene. Scene Command 149
SCNSAVE Saves the scene data. Scene Command 149
SDATA 1 Reads the scan measurement data 1. Measurement Function 149
SDATA 2 Reads the scan measurement data 2. Measurement Function 150

OVL Alphabetical List Section 1-1
Command/Function Operation Instruction Type Page
SEARCH Determines the number of an element in General Function 150
an array.
SELECT... CASE | Provides multiple branching depending on | General Command 151
~ CASEELSE ~ |avalue.
END SELECT
SET Sets the write-protect attribute for a file. File operation Command 151
SETBLUT Sets array data as binary LUT data. Image processing Command 152
SETDLUT Sets the display LUT data. Display control Command 152
SETDLVL Sets the display level for each display Display control Command 153
image.
SETLUT Sets array data as the filter LUT data. Image processing Command 153
SFTBLUT Shifts the binary LUT level. Image processing Command 153
S |SFTLUT Shifts the filter LUT. Image processing Command 154
SGN Determines the sign of a numeric Calculation Function 155
expression.
SIN Determines the sine of a numeric Calculation Function 155
expression.
SPACE$ Inserts space characters. 1-byte character string Function 156
operation/key control
SPC Outputs space characters. Text display control/key Function 156
control
SPCLOSE Draws a region bounded by a spline Graphic control Command 157
curve.
SPLINE Draws a spline curve. Graphic control Command 157
SQR Determines the square-root. Calculation Function 158
SSCROLL Scrolls the shading master memory. Special graphic display Command 158
control
STOP Stops program execution. General Command 158
STOP Disables, enables, or stops interrupts from | Key control Command 159
ON/OFF/STOP the STOP Key.
STR$ Converts a number to character string 1-byte character string Function 159
representation. operation
STRCHK Checks for incorrect strobe flashing. Camera/strobe control Function 160
STRINGS$ Creates a character string with a repeated | 1-byte character string Function 160
character. operation
STRMODE Enables and disables strobe flashing. Camera/strobe control Command 160
SUB ~ END SUB | Defines a structural subroutine. General Command 161
SWAP Switches two variables. General Command 161
TAB Specifies the position to display Text display control Function 161
characters.
TAN Determines the tangent of a numeric Calculation Function 162
expression.
TIME$ Displays and sets the time. Time/date control Function, 162
Command
T [TIMES$ Disables, enables, or stops timer Time/date control Command 163
ON/OFF/STOP interrupts.
TIMER Reads and sets the 10 ms timer. Time/date control Function, 163
Command
TROFF Exits the Trace mode. Program execution control | Command 164

OVL Alphabetical List Section 1-1
Command/Function Operation Instruction Type Page
T [TRON Enters the Trace mode. Program execution control | Command 164
U | UBOUND Determines the upper boundary of an General Function 164

array dimension qualifier.
UCASES$ Converts lowercase letters to uppercase 1-byte character string Function 164
letters. operation
VAL Converts a character string to a number. 1-byte character string Function 165
operation
V | VDWAIT Delays the VD interrupt the specified Special graphic display Command 165
number of times. control
VIDEOIN Inputs an image. Cameral/strobe control Command 165
WDISP Sets the type of image display in a win- Display control Command 166
dow.
WHILE ~ WEND | Repeatedly executes instructions. General Command 166
W [WINDOW Draws a window. Scene Command 167
WRITE Displays data on the display. Text display control Command 167
WRITE# Writes data to a sequential file. File control Command 168
WSCROLL Scrolls the window memory. Special graphic display Command 168
control

10

OVL Instruction List Section 1-2
1-2 OVL Instruction List
Instruction Command/Function Operation Page
Program editing Command | AUTO Automatically generates line numbers. 56
DELETE Deletes part of a program. 76
EDIT Selects the mode to edit lines of the 81
program.
FIND Searches for a character string in a 89
program.
HELP Displays help messages. 96
KEY LIST Displays the function key settings. 106
LIST Displays the program contents. 116
LOAD Loads a program. 117
MERGE Merges a program. 122
RENUM Renumbers program lines. 141
REPLACE Replaces a character string. 141
SAVE Saves a program. 146
Program Command [CONT Continues execution of a program. 68
exection control NEW Deletes a program from memory. 126
RUN Runs a program. 145
TROFF Exits the Trace mode. 164
TRON Enters the Trace mode. 164
File operation Command |[CHDIR Changes the current directory. 62
FILES Displays file names. 88
KILL Deletes a file. 107
MKDIR Creates a new directory. 124
NAME Renames files. 126
RMDIR Deletes a directory. 143
SET Sets the write-protect attribute for a file. 151
General Command | CALL Calls a structural subroutine. 60
CHAIN Transfers control to a specified program. 61
COMMON Transfers variables. 67
DATA Defines_ the data read with the READ 72
instruction.
DEF FN Defines a user function. 73
DEF FN ~ END DEF Defines a user function block. 74
DEFDBL Declares variables as double-precision 74
real number variables.
DEFINT Declares variables as integers. 74
DEFLNG Declares variables as long integers. 75
DEFSNG Declares variables as single-precision 75
real number variables.
DEFSTR Declares variables as character variables. 75
DIM Defines an array variable. 76
DO...LOOP REPEAT Repeats a loop specified number of times. 78
DO...LOOP UNTIL Repeats a loop until a condition is fulfilled. 78

1

OVL Instruction List

Section 1-2

Instruction Command/Function Operation Page
General Command |[DO...LOOP WHILE Repeats a loop while a condition is 79
fulfilled.
DO REPEAT LOOP Repeats a loop specified number of times. 79
DO UNTIL LOOP Repeats a loop until a condition is fulfilled. 80
DO WHILE LOOP Repeats a loop while a condition is 80
fulfilled.
END Stops program execution. 82
ERASE Deletes an array variable. 83
EXIT DEF/DO/FOR/SUB Exits a control block. 86
FOR...TO...STEP ~ NEXT Repeatedly executes instructions. 91
GOSuUB Branches to a specified subroutine. 95
GOTO/GO TO Unconditionally jumps to a specified line. 96
IF...GOTO ~ ELSE Evaluates a condition. 98
IF... THEN ~ ELSE Evaluates a condition. 98
IF. .. THEN ~ ELSEIF ~ ELSE ~ | Evaluates a condition. 99
END IF
LET Assigns an expression to a variable. 113
ON. .. GOSsuUB Branches to a subroutine on a specified 130
value.
ON...GOTO Jumps program operation on a specified 131
value.
OPTION BASE Declares minimum value of the array 132
qualifier.
RANDOMIZE Initializes random number generation. 140
READ Reads data. 140
REM Inserts remarks into the program. 141
RESTORE Specifies the line with the DATA 142
statement.
RETURN Returns operation from a subroutine. 142
SELECT... CASE ~ CASEELSE | Provides multiple branching depending on 151
~ END SELECT a value.
STOP Stops program execution. 158
SUB ~ END SUB Defines a structural subroutine. 161
SWAP Switches two variables. 161
WHILE ~ WEND Key control 166
Function DATES$ Displays and sets the date. 73
LBOUND Determines the lower boundary of an 112
array dimension qualifier.
SEARCH Determines the number of an element in 150
an array.
UBOUND Determines the upper boundary of an 164
array dimension qualifier.
Text display Command | COLOR Changes the character attributes. 66
COLOR@ Changes the character attributes within a 66
specified region.
CONSOLE Sets the text display mode. 68

12

OVL Instruction List

Section 1-2

Instruction Command/Function Operation Page
Text display Command | LOCATE Sets the cursor position. 118
PRINT Displays data on the text display. 135
PRINT USING Displays formatted data on the text 136
display.
WRITE Cameral/strobe control 167
Function CSRLIN Determines the cursor line position. 69
POS Detg_rmines the current cursor column 135
position.
SPC Outputs space characters. 156
TAB Specifies the position to display 161
characters.
Graphic control Command |ARC Draws an arc. 54
BOX Draws a rectangle. 59
CIRCLE Draws a circle. 64
CLS Clears characters and graphics. 66
CURSOR Draws a cross cursor. 69
ELLIPSE Draws an ellipse. 82
GET@ Reads image data to VRAM. 93
LINE Draws a straight line. 114
POLYGON Draws a polygon. 134
POLYLINE Draws a polyline. 134
PSET Draws a point. 138
PUT@ Draws a pattern in VRAM. 139
SPCLOSE Draws a region bounded by a spline 157
curve.
SPLINE Draws a spline curve. 157
Function POINT Determines the density at specified 133
coordinates.
Special graphic Command | BCOPY Copies a binary image. 57
display control BCOPY2 Makes enlarged and reduced copies of 58
binary images.
GCOPY Copies the raw image in VRAM. 92
GCOPY2 Makes enlarged and reduced copies of 92
the raw image.
MASKBIT Disables writing to specific planes. 120
SBANK Selects the shading memory bank 146
number.
SSCROLL Scrolls the shading master memory. 158
VDWAIT Delays the VD interrupt the specified 165
number of times.
WSCROLL Cameral/strobe control 168
Calculation Function ABS Determines an absolute value. 54
ATN Determines the arctangent (arctan) of a 55
value.
CDBL Converts to a double-precision value. 61
CINT Converts to an integer. 63

13

OVL Instruction List Section 1-2
Instruction Command/Function Operation Page
Calculation Function CLNG Converts to a long integer. 65
COs Determines the cosine of an angle. 69
CSNG Converts to a single-precision value. 69
CVD Converts an 8-byte character string to a 70
double-precision real number.
CVviI Converts a 2-byte character string to an 71
integer.
CVL Converts a 4-byte character string to a 71
long integer.
CVsS Converts a 4-byte character string to a 71
single-precision real number.
EXP Determines the natural number e raised 87
to an exponential power.
FIX Rounds down a value to an integer. 90
INT Rounds down a value to an integer. 103
LOG Determines natural logarithms. 118
RND Generates a random number. 144
SGN Determines the sign of a numeric 155
expression.
SIN Determines the sine of a numeric 155
expression.
SQR Determines the square-root. 158
TAN Determines the tangent of a numeric 162
expression.
Error control Command | ERRMSG Defines the operation when an error 84
occurs.
ERROR Generates a pseudo-error. 84
ON ERROR GOTO Defines the error processing routine. 128
RESUME Restarts the operation before the error 142
occurred.
Function ERL Determines the line number where an 84
error occurred.
ERR Determines the error code. 84
1-l:_)yte chara_cter Command | MID$ Extracts part of a character string. 123
string operation Function ASC Determines the character code. 55
CHR$ Converts a character code to a character. 63
HEX$ Converts a numeric expression to 97
hexadecimal.
INSTR Determines the position of a specified 103
character.
LCASE$ Converts uppercase letters to-lower case 112
letters.
LEFT$ Extracts the left end of the specified 113
character string.
LEN Determines the length of a character 113
string.
LTRIM$ Deletes spaces to the left of a character 120
string.
MID$ Extracts part of a character string. 123

14

OVL Instruction List Section 1-2
Instruction Command/Function Operation Page
1-byte character | Function MKD$ Converts a double-precision value to a 123
string operation character string.
MKI$ Converts an integer to a character string. 124
MKL$ Converts a long integer to a character 124
string.
MKS$ Converts a single-precision value to a 125
character string.
NPIECE Determines the number of smaller 126
character strings.
OCT$ Converts a number to an octal character 127
string.
PIECE$ Returns partial character strings. 133
RIGHTS$ Extracts the right end of the specified 143
character string.
RTRIM$ Deletes spaces to the right of a character 145
string.
SPACE$ Inserts space characters. 156
STR$ Converts a number to character string 159
representation.
STRING$ Creates a character string with a repeated 160
character.
UCASE$ Converts lowercase letters to uppercase 164
letters.
VAL Converts a character string to a number. 165
Japanese _ Command |[KPLOAD Registers a 2-byte character pattern. 110
gharaqter string Function AKCNV$ Converts 1-byte characters to 2-byte 54
peration
characters.
JIS$ Determines the Shift JIS code. 105
KACNV$ Converts from wide to standard 105
characters.
KEXT$ Selects a character. 105
KINSTR Determines the position of a 2-byte 108
character.
KLEN Determines the length of a character 108
string including 2-byte characters.
KMID$ Extracts part of a character string 109
including 2-byte characters.
KNJ$ Determines a 2-byte character. 109
KPOS Determines the position of a character in 110
a character string.
KTYPE Determines the type of a character. 111
File control Command | CLOSE Closes an open file. 65
FIELD# Allocates the variable areas. 87
GET# Reads data from a random file. 93
INPUT# Reads data from a file. 101
LINE INPUT# Reads data from a file. 116
LSET Writes left-justified character data. 120
OPEN (1) Opens a file. 131
PRINT# Writes data to a sequential access file. 137

15

OVL Instruction List Section 1-2
Instruction Command/Function Operation Page
File control Command | PRINT# USING Writes formatted data to a sequential 138
access file.
PUT# Writes data to a random access file. 139
RSET Writes right-justified character data. 145
WRITE# 1-byte character string operation 168
Function ATTR$ Determines the write protect attribute of a 55
file.
DSKF Determines the free space in the memory 81
card.
EOF Determines the end of the file. 83
INPUT$ Reads a specified length of data. 102
LOC Determines the current position in a 117
specified file.
LOF Determines the size of a file. 118
Key control Command |HELP ON/OFF/STOP Disables, enables, or stops interrupts 96
from the HELP Key.
INPUT Assigns data to a variable. 101
INPUT WAIT Inputs data with a time limitation. 102
KEY Assigns a character string to function 106
keys.
KEY ON/OFF/STOP Disables, enables, or stops interrupts 106
from the function keys.
KINPUT Input data in the Japanese input mode. 108
LINE INPUT Assigns a line of data to a character 115
variable.
LINE INPUT WAIT Inputs data with a time limitation. 116
ON HELP GOSUB Defines the HELP Key interrupt 128
subroutine.
ON KEY GOSUB Defines the function key interrupt 129
subroutine.
ON STOP GOSUB Defines the STOP Key interrupt 129
subroutine.
STOP ON/OFF/STOP Disables, enables, or stops interrupts 159
from the STOP Key.
Function INKEY$ Determines the character input from the 100
keyboard.
KEYIN Reads the status of the console keys. 107
SPACE$ Inserts space characters. 156
SPC Outputs space characters. 156
Time/date control [Command | DATE$ Displays and sets the date. 73
ON TIME$ GOSUB Defines the timer interrupt subroutine. 130
TIME$ Displays and sets the time. 162
TIME$ ON/OFF/STOP Disables, enables, or stops timer 163
interrupts.
TIMER Reads and sets the 10 ms timer. 163
Function DATE$ Displays and sets the date. 73
TIMES$ Displays and sets the time. 162
TIMER Reads and sets the 10 ms timer. 163

16

OVL Instruction List Section 1-2
Instruction Command/Function Operation Page
RS-232C Command [COM ON/OFF/STOP Controls interrupts from the RS-232C. 67
communication ON COM GOSUB Defines the RS-232C interrupt jump 127
destination.
OPEN (2) Opens the RS-232C port. 132
I/O port I/O Command | BUSY Controls BUSY signal output status. 59
control DOUT Outputs data to an output port. 80
ERROUT Controls the error signal output. 85
GATE Controls the GATE signal. 91
INTR ON/OFF/STOP Disables, enables, or stops interrupts with 104
the STEP signal.
ON INTR GOSUB Defines the STEP signal interrupt 128
subroutine.
POUT Controls the bit status of an output port. 135
Function DIN Reads data from an input port. 77
DSA Reads the status of the DSA signal. 81
PIN Reads the bit status of an input port. 133
Memory Command | CLEAR Initializes variables. 65
management Function FRE Determines the free memory size. 91
Special Command | BEEP Turns the buzzer on and off. 58
DEVICE Specifies the input and output devices. 76
IMGLOAD Loads image data to VRAM. 99
IMGSAVE Saves image data from VRAM. 100
IPL Sets the OVL boot-up mode. 104
MENU Returns to the Menu mode. 122
Scene Command | CHANGE Changes the measuring conditions. 62
SCNCALIB Sets the calibration data. 148
SCNLOAD Loads the scene data. 149
SCNLUT Sets the binary level of a scene. 149
SCNSAVE Saves the scene data. 149
WINDOW 1-byte character string operation 167
Function SCNCAM Reads the camera data for a scene. 148
SCNLEVEL Determines the binary level of a scene. 148
Measurement Command |LABEL Carries out labelling. 111
LPUTIMG Draws a labelled image. 119
LSORT Renumbers labels in order of area. 120
MEASURE Conducts measurements. 122
MMODE Sets the measurement mode. 125
RMODE Sets the measurement mode for detailed 144
run length data.
SCAN Conducts scan measurement. 147
SCANSET Sets the conditions for scan 147
measurement.
Function LDATA Measures data for the labelled image. 112
LNUM Determines the number of labelled 117

images.

17

OVL Instruction List

Section 1-2

Instruction Command/Function Operation Page
Measurement Function LPOINT Determines the label number at a 119
specified position.
MDATA Reads the measured results 1. 121
MDATA2 Reads the measured results 1. 121
RDATA Reads the detailed run length data. 140
RUNL Reads the simple run length data. 146
SDATA 1 Reads the scan measurement data 1. 149
SDATA 2 Reads the scan measurement data 2. 150
Image processing | Command | ENHANCE Creates LUT data for contrast 83
modification.
FILTDATA Specifies the line filter factors. 88
FILTER Sets the image filtering function. 88
FILTERIN Selects image input to the filter. 89
GETBLUT Reads the binary LUT data. 94
GETLUT Reads the filter LUT data. 95
HISTGRAM Reads a density histogram. 97
LEVEL Sets the binary level. 114
SETBLUT Sets array data as binary LUT data. 152
SETLUT Sets array data as the filter LUT data. 153
SFTBLUT Shifts the binary LUT level. 153
SFTLUT Shifts the filter LUT. 154
Function AUTOLVL Determines the binary level. 56
Camera/strobe Command | CAMERA Switches cameras. 60
control CAMMODE Selects the image output from a Camera 60
I/F Unit.
EVENTIN Sets the image input synchronized with 85
events.
FLASH Controls the strobe and shutter function. 90
STRMODE Enables and disables strobe flashing. 160
VIDEOIN Inputs an image. 165
Function CAMCHK Determines the camera connection 60
status.
STRCHK Checks for incorrect strobe flashing. 160
Display control Command | BACKDISP Sets the image display outside the 56
window.
DISPLAY Sets the display image. 77
GETDLUT Reads the display LUT data. 94
SETDLUT Sets the display LUT data. 152
SETDLVL Sets the display level for each display 153
image.
WDISP General 166
Function GETDLVL Determines the display level of the image. 95

18

SECTION 2

OVL Syntax
This section provides the basic OVL syntax required before programming.
2-1 LINEFOrMat ..ottt 20
2 R T 0 20
2-1-2 LINeNUMDBEIS ... 20
2-1-3 S OMENtS . .o e 20
2-2 OVL Charactersand Symbols it e e e 20
2-3 0N ANES . .ottt 21
2-3-1 Character CONStantSottt e e e 21
2-3-2 NUMENC CONStaNtS . . . oo v vttt et e e e e 22
2-4 Variables . .o 23
2-4-1 TypeDEClarators 23
2-4-2 VariableNames 24
2-4-3 ReSarVedWOrAS . ..o 24
2-4-4 Array Variables 24
2-5 TYPE CONVEISION ..ottt ettt e e 25
2-6 Operations and EXPreSSIiONSottt et e 27
2-6-1 OPEIalOrS .. .ottt e 27
2-6-2 EXPrESSIONS ..ottt 29
2-6-3 Priority Of Operationsot e 32
2-T IEITUDES oot 32
2-8 LaAEIS .o 32

19

OVL Characters and Symbols Section 2-2

2-1 Line Format
2-1-1 Lines

2-1-2 Line Numbers

2-1-3 Statements

An OVL program is composed of lines.

Example Line numbers and text
10 PRI NT " OVL”
20 REM ***QyL***

30 ! ***Q/L***

40 PRI NT: PRI NT " END’

50 END

T L Statement
Line number

Each line consists of a line number and a statement. Each line, including the line
number, spaces, and the instruction may be up to 255 bytes in length.

Normally a line declares a single statement but it is possible to include multiple
statements in a line. Multiple statements in a single line are delimited by colons

().

The line numbers are positioned at the start of a line and are integers applied in
ascending order between 1 and 65535. If line numbers are not applied in
ascending order, the lines are automatically rearranged into ascending order.
Line numbers may start and finish with any number between 1 and 65535.
Lines assigned with line numbers are stored as part of the program when the
Return Key is pressed. A line with no line number is not stored as part of the
program but is executed immediately when the Return Key is pressed.

The program is executed in the order of the line numbers, except where
branching occurs.

A statement is the smallest unit used to declare an OVL procedure.
Statements include executable statements which declare and execute OVL
commands and functions, non-executable statements which provide program
comments, and labels which define jump destinations.

2-2 OVL Characters and Symbols

Symbols

20

The following characters and symbols can be used with OVL programming.

Statement ———— 1-byte characters Roman uppercase
Roman lowercase
Numerals
Katakana
Symbols

Control characters

L 2-byte characters Japanese characters

Only lowercase characters defined in a character constant or character variable
inside quotes (" ") are handled as lowercase characters. The system
automatically converts other lowercase characters to uppercase characters.

Period (.)
The period indicates the current line number (the last line number
executed). It can replace the line number in the following commands:
AUTO, EDIT, LIST, LLIST, RENUM.

Constants

Section 2-3

2-3 Constants

Constants —

Minus (=)
The minus specifies a range of lines.

Colon (2)

The colon delimits one statement from another.

Comma (,)

The comma delimits parameters in a series.

Semicolon (;)

The semicolon delimits parameters in an output statement.
Apostrophe ()

Identical in meaning to a REM statement.
Question Mark (?)

Simplifies input of the word “PRINT.” Immediately after input, the question
mark is converted to “PRINT.”

Asterisk (*)
The asterisk indicates the start of a label name.
Space

A space must be inserted between a command and the following parameter.
Other spaces may be inserted anywhere except inside command names,
variable names, or numeric values.

Values or character strings declared directly in the program are known as
constants. A character constant is declared differently from a numeric constant.

—— Character constant Character constant

—— Octal format
— Integer constant ———— Decimal format
L Hexadecimal format

L Numeric constant—|
—— Octal format

—— Long integer constant ———— Decimal format
L Hexadecimal format

—— Single-precision constant

L Real number constant —

L Double-precision constant

2-3-1 Character Constants

Character Strings

A character constant is a character string enclosed in double quotation marks (")
and can contain up to 255 characters.

The CHRS$ function must be used to include double quotations inside a character
string, as shown in one of the examples below.

A character string of zero length is known as a “null string.”

"1234567890" Arithmetic operations cannot be carried out on numbers in
this form.

"NEW PLAN” This character string contains 8 characters, 7 letters and
one space.

CHRS$(34) This character string represents a single double quotation

(") character.

21

Constants Section 2-3

............... This is a null string.

2-3-2 Numeric Constants
A numeric constant directly declares a value for operation by the arithmetic
operators.

The plus (+) of minus (-) sign can be included before the value to indicate a
positive or negative value, but the plus sign may be omitted.

Numeric constants can be declared as integers or real numbers.
Integer Constants Decimal Format

Integers must lie in the range —32768 to +32767.

Adding a % sign to a real number in the above range rounds off the value to
an integer constant.

Examples of decimal format integer constants:
32767
-123
+5%
321.01% (This is identical to 321.)
Octal Format

An octal integer constant is declared as an octal value (digits 0 to 7)
preceded by the prefix &0. However, the “O” can be omitted if required.

Octal integer constants can be specified between &00 and &0177777.
Examples of octal format integer constants:
&12345
&O77777
Hexadecimal Format

A hexadecimal integer constant is declared as a hexadecimal value (digits O
to 9, A to F) preceded by the prefix &H.

Hexadecimal integer constants can be specified between &HO and
&HFFFF.

Examples of hexadecimal format integer constants:
&H100
&HFCAO

Long Integer Constants Decimal Format

Integers must lie in the range —2147483648 to +2147483647.

Adding a & sign to a real number in the above range rounds off the value to a
long integer constant.

Examples of decimal format long integer constants:
9500000&
-365432&
100.12& (This is identical to 100.)
Octal Format

An octal integer constant is declared as an octal value (digits 0 to 7)
preceded by the prefix &0 and followed by the type declarator (&).

Octal integer constants can be specified between &O0& and
&O377T7TTTTTT7&.

Examples of octal format long integer constants:
&012345&
&0112377777&

22

Variables Section 2-4

Hexadecimal Format

A hexadecimal integer constant is declared as a hexadecimal value (digits O
to 9, Ato F) preceded by the prefix &H and followed by the type declarator
(&).

Hexadecimal integer constants can be specified between &H0& and
&HFFFFFFFF&.

Examples of hexadecimal format long integer constants:
&H100&
&HFCA00&

Note Values input in octal and hexadecimal format are printed out in decimal format.

Real Number Constants Single-precision Format

2

4-1

Real number data between —1.70141E+38 to +1.70141E+38 to 6 significant
digits.
The following numbers are declared as single-precision real numbers:
» Values with a decimal point but not exceeding 6 significant digits
¢ Values with the single-precision declarator (!)
¢ Values in the single-precision E exponent format.
Examples of single-precision constants:
108.12
3.14!
—8.76E-6
Double-precision Format

Real number data between -1.701411834604692D+38 to
+1.701411834604692D+38 to 16 significant digits.

The following numbers are declared as double-precision real numbers:
e Real numbers with 7 or more digits
¢ Values with the double-precision declarator (#)
¢ Values in the double-precision D exponent format.
Examples of double-precision constants:
108.123456
3.14#
—-8.76D-6

Variables
Named areas in the program in which values or character strings are stored are
known as variables.

Before a value is allocated, a numeric variable contains 0 and a character
variable contains a null string (").

The user can declare both the name and type of a variable.

Character variable
Variable .
Integer variable
Numeric variable —E Long integer variable
Real number variable Single-precision variable
T Double-precision variable

Type Declarators

The type of variable is declared with a declarator suffix to the variable name.

Variables with an identical variable name but different declarators are treated as
separate variables.

23

Variables

Section 2-4

Types of Declarator:

$ Character
% Integer
& Long integer

b, Single-precision
.... Double-precision

The type of variable can also be declared with a type statement. However, the
type declared with the type declarator takes priority over the type statement.

Types of Type Statement:

DEFSTR Declares a character variable.

DEFI NT Declares an integer variable.
DEFLNG Declares a long integer variable.
DEFSNG Declares a single-precision variable.
DEFDBL Declares a double-precision variable.

Variables not declared with a type declarator or type statement are treated as
single-precision numeric variables.

Examples of type statements:

DEFSTR NAME$
DEFDBL AX#, AY#, AZ#

The $ and # can be omitted from these statements.

2-4-2 Variable Names

Variable names are limited to 40 characters, including the type declarator. Al-
phanumeric characters, the period, and type declarator are valid in a variable
name.

The name must start with an alphabetic character. Uppercase and lowercase
characters are not differentiated. The type declarator must be added to the end
of the variable name.

Symbols cannot be used in variable names.

Reserved words cannot be used as variable names. However, variable names
may contain reserved words.

Variable names cannot begin with the letters “FN.”

2-4-3 Reserved Words

Reserved words are character strings defined in the system, such as
commands, functions, and operators. Users cannot use reserved words as
variable names.

The reserved words are listed in Appendix B, Reserved Words.

2-4-4 Array Variables

24

A variable with a single variable name storing multiple values is known as an
array variable.

Array variables storing character strings are classified as character array
variables and array variables storing numeric values are classified as numeric
array variables.

Numeric array variables are further subdivided according to the type of numeric
values they store into integer array variables, long integer array variables,

Type Conversion Section 2-5

single-precision real number array variables, and double-precision real number
array variables.

Character array variable
Array variable Integer array variable
Numeric array variable Long integer array variable
Single-precision real number array variable
Double-precision real number array variable
The dimension of the array variable and the subscript range are declared with
the DIM statement.

It is unnecessary to use the DIM statement to declare subscripts up to 10.
Example:
DIM A (10, 10, 10) may be omitted.

The dimensions of the array must be declared in a single program line (255
characters). The subscripts are limited by the amount of memory. Consequently,
4-dimensional, 5-dimensional, and 6-dimensional arrays may be declared but
the number of elements are restricted.

Example:
DI M A(10) 1-dimensional array,
number of elements = 11
DI M TA(10, 50) 2-dimensional array,

number of elements = 11 x 51 = 561

DM TTA$(2, 5, 3) 3-dimensional array,
number of elements =3 x6 x4 =72

4-dimensional array
5-dimensional array
6-dimensional array

Subscripts start from zero, so that the action number of elements is 1 plus the
subscript.

2-5 Type Conversion
If necessary, the type of numeric data can be converted under the conditions
described below.
It is not possible to convert between character and numeric data.

Condition 1 When data is assigned to a variable of a different type, the data is converted to
the type declared with the variable type declarator.
Example of assigning a value to a variable of a different type:

10 A%1.234 .. Assigns the single-precision real number 1.234 to the
integer variable A% (assigned as 1).

20 PRINT A% . . Displays the value stored in the integer variable A% on

the screen.
Result:
1. The integer 1 is displayed.
Condition 2 Before operations are carried out on values with different accuracies, all values

are first converted to the accuracy of the highest accuracy value.
Example of operations on values of different accuracy:
10 A%10% 3%

20 PRI NT A% . . The result of the operation on integers is displayed as
an integer.

30 B!'=10% 3!

25

Type Conversion

Section 2-5

40 PRI NT B!

50 CH=10% 3#

60 PRINT C# ..

Results:

3
3.33333

The integer 10% is converted to a single-precision real
number, the operation is carried out on single-preci-
sion values, and the result displayed as a single-preci-
sion value.

The integer 10% is converted to a double-precision
real number, the operation is carried out on double-
precision values, and the result displayed as a double-
precision value.

........ Result of execution of line 20 is an integer.
........ Result of execution of line 40 is a single-preci-

sion real number.

3.333333333333333 ... Result of execution of line 60 is a double-preci-

sion real number

Before logical operations all values are converted into integers and the results

Assigns the value 1.234 to the numeric variable A.

Converts the value 1.234 stored in the numeric vari-
able A to the integer 1, executes the NOT logical op-
eration, and assigns the result (—2) to the numeric vari-

Displays the values stored in the numeric variables B
and A on the screen.

Result of execution of line 30 is displayed on the

Real numbers are rounded off to an integer. An error occurs if the converted

Assigns the value 1.45 rounded of to 1 to the integer
variable A%.

Assigns the value 1.65 rounded of to 2 to the integer
variable B%.

30 PRI NT A% B% Displays the values stored in the integer variables A%

and B% on the screen.

Result of execution of line 30 is displayed on the

Condition 3
are also integers.
Example of logical operations:
10 A=1.234
20 B=NOT A . ..
able B.
30 PRINT B, A
Result:
-2 1.234
screen.
Condition 4
value lies outside integer range.
Example of conversion to an integer:
10 A%1. 45
20 B%1. 65
Result:
12, ...
screen.
Condition 5

When a double-precision variable is assigned to a single-precision variable, the

variable is rounded off to 6 significant digits, with subsequent digits rounded off.
Example of conversion to a single-precision, real number variable:
10 AI'=3. 14159265358 . Substitutes the effective six digits, 3.14159,

20 PRINT Al

Result:
3.14159

26

for a single-precision, real number variable Al.

e The value to be stored as the single-precision,

real number variable Al will be displayed (the
seventh digit will be rounded to the nearest
whole number).

Result of execution of line 20 is displayed on the screen.

Operations and Expressions Section 2-6

Note OVL does not convert between numeric and character data, except for special
applications such as random access file /0 and conversion of number declara-
tion character strings to numeric data.

Special functions are used to convert between numeric and character data,
where required.
Random access file I/O:

CVI/CVL/CVS/CVD functions
MKI$/MKL$/MKS$/MKD$ functions

Conversion of a number declaration character string to numeric data:
VAL function

Conversion of numeric data to a character string:
STR$ function

2-6 Operations and Expressions
2-6-1 Operators

Three types of operator are used in OVL: arithmetic operators, relational
operators, and logical operators.

Arithmetic operator Addition, subtraction, multiplication, division, exponent, remainder operations.
Operator—E Relational operator Comparison of two expressions.
Logical operator Operations under multiple conditions, bit operations, binary operations
Arithmetic Operators Arithmetic operators link numeric constants or variables to carry out addition,
subtraction, multiplication, division, exponent, and remainder operations.
Arithmetic Description Declaration Mathematical
operator example notation
+ Addition A+ B A+B
- Subtraction A-B A-B
* Multiplication A* B AxBorAB
/ Real number A/l B A+BorAB
division
¥ Integer division A¥ B [A/B]
[]indicates Gauss’
notation
A Exponent A™B AB
operation
MOD Remainder A MDD B A—-[A/B]xB
calculation []indicates Gauss’
notation

If either the divisor or dividend for integer division is a real number, the real
number is rounded off to an integer before division. If the quotient contains
decimal places, these are dropped.

Example of integer division:
123.4¥67.89 A 123¥68 A 1.808 A1
Decimals rounded off A DivisionA Decimals dropped A Results

The decimal places are rounded off before the remainder calculation is carried
out on real numbers. The result is the remainder from the integer division.

Example of remainder calculation:
13.3MOD4=1 Remainder of 13 divided by 4.
25.68 MOD 6.99 =5 Remainder of 26 divided by 7.

27

Operations and Expressions

Section 2-6

Relational Operators

Logical Operators

28

Digit overflow occurs if the result of a calculation exceeds the range of the value
type. If the digits overflow, an error is output and the calculation continues with
the maximum value the computer can handle.

Example of digit overflow:
A% = 32760 + 10
An error is output and the A% value becomes 32767.

If division by 0 is carried out during operation, an error is output and the
calculation continues with the maximum value the computer can handle. The
same applies if the exponent operation is carried out on 0 with a negative
exponent.

Relational operators compare two numeric data or 2 character data.

True (-1) is returned if the result of the compared data is the same or False (0) is
returned if the result of the compared data is different.

Relational operator Description Declaration example
= Equals A=1B
<> > < Not equals A<>B A><B
< Less than A Greater than A>B
<= =< Less than or equal to A<=B A= = = > Greater than or equal to A>=B A=>8B

Relational operators are used inside the IF statement to control the flow of
program execution.

Examples of relational operators inside the IF statement:

IF A<>B THEN 1000 Jump to line 1000 if A is not equal to B (A <
> B is true (-1)).

IF A$ = “Y” THEN *PROCESS1 Jump to label *PROCESSL if A$ is equal
to“Y” (A$ =" Y"is true (-1)).

Logical operators are used to investigate multiple conditions and carry out bit
operations or binary (Boolean) operations on a specified value.

The handled values are first converted to a two’'s complement display integers
between —32768 to +32767 before the value 0 or 1 is assigned to each bit as the
result of the operation. An error occurs if this range is exceeded during
conversion.

Logical operator Description Equivalence
NOT Declaration example NOT A
AND Negation A AND B
(034 Logical product A ORB
XOR Logical sum A XOR B
I MP Exclusive OR AIMP B
EQV Inclusive OR A EQV B

Refer to page 29 for details of the results of logical operations.

Operations and Expressions Section 2-6

2-6-2 Expressions

In an OVL program, an “expression” refers to constants, variables, functions,
numeric constants and variables linked with arithmetic operators, and character
constants and variables linked with plus signs (+).

Examples of expressions:

Numeric Character Function Logical
expressions expressions expressions expressions
A=20*15/3 A$="OVL"+"BASIC" |A=B A AND B
S=P*D*D/4 A$=B$+C$ A<B AORB
2.7145 "OvL” A<>B A XORB
A A$ A<B AND A>C
SIN (X) CHRS$ (31) A=B OR A<>C

Numeric Expressions An expression returning a numeric value is known as a numeric expression.

Numeric expressions can be numeric constants, numeric variables, or functions
returning numeric values linked by arithmetic or logical operators.

Multiple expressions contained within parentheses () can be linked together.

+ Numeric constant

Numeric variable

Function returning a numeric value
(Numeric expression)

Not

Arithmetic operator
Logical operator

Character Expressions An expression returning a character string is known as a character expression.

Character expressions can be character constants, character variables, or
functions returning character strings linked by plus signs.

Multiple expressions contained within parentheses () can be linked together.

Character constant

Character variable

Function returning a character string
(Character expression)

Plus sign +. . . links character strings

Relational Expressions A pair of numeric expressions linked by a relational operator is known as a

relational expression.

Relational expressions can be numeric constants, numeric variables, or
functions returning numeric values linked by relational operators.

Numeric constant Numeric constant

Numeric variable Relational Numeric variable
Function returning a numeric value operator Function returning a numeric value
(Numeric expression) (Numeric expression)

Logical Expressions Multiple relational expressions linked by logical operators are known as a logical

expression.
A logical expression is made up of several relational expressions linked by
logical operators to execute bit or binary operations or to evaluate multiple
conditions.

29

Operations and Expressions

Section 2-6

Logical expressions have a numeric value and may be used in any position as a
numeric expression.

A logical expression is True if the result of the expression is —1 or False if the
result is O.

(Not)

Relational

operator

Relational
operator

Logical expressions may include six types of logical operator: NOT, OR, AND,
XOR, IMP and EQV.

The results of operation by these logical operators on a single bits A and B are
shown in the following tables.

NOT
A NOT A
Resul t
0 1
0
AND
A B A AND B
Resul t
0 0 0
0 1 0
1 0 0
1 1 1
OR
A B AORB
Resul t
0 0 0
0 1 1
1 0 1
1 1 1

30

XOR
A B A XOR B
Resul t
0 0 0
0 1 1
1 0 1
1 1 0
IMP
A B AIM B
Resul t
0 0 1
0 1 1
1 0 0
1 1 1
EQV
A B A EQV B
Resul t
0 0 1
0 1 0
1 0 0
1 1 1

Examples of bit operations using logical expressions:
Logical expression (NOT): NOT 5

Result: -6

Logical Integer Binary representation
expression representation
5 0000000000000101
NOT 5 —6 1111111111111010

Operations and Expressions

Section 2-6

Functions

Logical expression (AND): 3 AND 5 Result: 1

Logicgl Integer. Binary representation
expression representation
- 3 0000000000000011
- 5 0000000000000101
3 AND 5 1 0000000000000001
Logical expression (OR): 3OR 5 Result: 7
Logice_tl Integer Binary representation
expression representation
3 0000000000000011
5 0000000000000101
3 OR5 7 0000000000000111

Logical expression (XOR): 3 XOR 5 Result: 6

Logical Integer Binary representation
expression representation
3 0000000000000011
5 0000000000000101
3 XOR 5 6 0000000000000110
Logical expression (IMP): 3 IMP 5 Result: -3
Logical Integer Binary representation
expression representation
3 0000000000000011
5 0000000000000101
3 1M 5 -3 1111111111111101
Logical expression (IMP): 3 EQV 5 Result: -7
Logical Integer Binary representation
expression representation
3 0000000000000011
5 0000000000000101
3 EQV 5 —7 1111111111111001

A function executes predefined operations on specified values (called
arguments) and returns a numeric value or character string as the result. Al-
though functions are handled as expressions, unlike numeric, character,
relational, and logical expressions the function itself holds the result of the
operations.

Some functions are automatically assigned values by the system. These
functions are known as system variables.

System variables require no arguments. Values are assigned to some system
variables under special system conditions, such as when an error or interrupt
occurs, but some other system variables always hold values, such as the time or
date.

OVL offers user-defined functions that the BASIC user can define as required.
User-defined functions are handled inside the program in the same way as the
system variables.

Elementary functions (such as the SIN function) match the precision of the
argument. The function becomes double precision if the argument is a double-

31

Labels

Section 2-8

precision value or single-precision if the argument is an integer or a single-preci-
sion value.

2-6-3 Priority of Operations

1,23.

2-7 Interrupts

2-8 Labels

32

Operations are executed in the order of priority shown below. Low numbers take
priority over higher numbers. Operations with the same number are executed in
the order in which they appear.

=

. Expressions enclosed in parenthesis

2. Functions
3. N (Exponents)
4. — (Minus signs: not preceded by a value or numeric expression)
5. *, [(multiplication and real number division)
6. ¥ (integer division)
7. MOD (remainder calculation)
8. +, — (addition, subtraction)
9. Relational operators (<, >, =, and combinations)
10. NOT
11. AND
12. OR
13. XOR
14. IMP
15. EQV
Example:

A%=2+8MOD5-3

The above expression is interpreted as 2 + (8 MOD 5) — 3, so that A% = 2. Al-
though the parentheses are not strictly necessary in this example, it is normal to
include them to prevent confusion when reading the program.

OVL supports the interrupts listed below.

Stop Key (ON STOP GOSUB)
Help Key (ON HELP GOSUB)
Real-time timer (ON TIME$ GOSUB)
Function Key (ON KEY GOSUB)
RS-232C circuit (ON COM GOSUB)
Processing error (ON ERROR GOTO)
STEP signal (ON INTR GOSUB)

Labels can be used instead of line numbers to control jump destinations in a
program. Precede label names by an asterisk (*).

Define the name after the asterisk in alphabetic characters and the period
character (.). Uppercase and lowercase characters are not differentiated.

Reserved words cannot be used as label names. However, label names may
contain reserved words.

The length label name is restricted only by the number of characters in the
program line (255 characters).

Label names must be positioned at the start of the program line.

Labels

Section 2-8

Example:
100 | F A<>B GOTO *UNEQUAL
110
120
200 *UNEQUAL
210 ..

*UNEQUAL is interpreted in the GOTO statement as identical to 200. In this case,
the program jumps to line 200 if A # B.

33

SECTION 3
Screen Operations

This section provides general information on screen manipulation.

31 HowofImageDataiii i e e e 36
3Ll VRAM 36
B2 LU oot 38
3-1-3 Display LUT oo 39
B4 R oo 39
3-2 Display and Measurement Block Diagrams ov vt 40
3-2-1 Display and Measurement Status of the Cameralmage 40
3-2-2 Display and Measurement Status of the Image Memory Contents 411
3-3 Howof Measured Dataottt e e 41
34 Planeand FrameMemoOryttt e 43
3-4-1 PlaneMemory e 43
34-2 Frame M emO Y .ottt e 43
3-4-3 Binary Image Planes 43
344 MaSK BilS . .. 43
35 WINAOWS . . oo 44
3-5-1 WINdow Planest e 44
352 PantWIndowooo i 45
3-5-3 Pattern MatchingWindow e 45
3-6 Drawing Density and DrawvingModest 46
3-6-1 Drawing Densityiuiii 46
36-2 DrawingModet e 46
37 RUN NG . . 47
3-7-1 SmpleRunLength i 47
3-7-2 DetailedRunbLength 48
3-8 Labellingo e 48
-9 SCIOING . oot 49
39-1 Window Scrolling ...t 49
3-9-2 Shading SCrollingot 49
3-10 Fill MEaSUrEmMENtottt ettt e e e e e e 50
3-11 Image Cut-Off .. oo 50
3-12 SCan MEASUrEIMENLE oo ittt ettt et e e e e 51

35

Flow of Image Data Section 3-1

3-1 Flow of Image Data

OVL offers image-processing commands and functions in addition to the normal
BASIC commands and functions. The flow of this image-processing data is
shown in the block diagram below.

Image Data Flow

8 bit Image bus 1
Camera unit
8 bit VRAM 3; | Image memory
Im
Filter | ~|LUT T age bus 0
8 bits - bis
VRAM 2: Window memory L .
Shading memory oie
play .
) control Display
VRAM 4: ' 1 bit
VRAM 1: | Graphic memory ———m——
1 bit
VRAM 0: Character memory ———

Memory directly influencing the measurements or display is known as VRAM.
The F300 has 5 types of VRAM, which are explained below.

Memory Type

0: Character memory Plane
1: Graphic memory

2: Window memory Frame
3: Image memory

4: Shading memory

Character Memory (Plane)
The character memory is mainly used to display characters and is used to edit
the OVL program and display compilation results. The contents of the character
memory have no direct effect on the measurement results. The memory is
configured as 512 x 512 x 1 bit.

Density (0 or 1 only):
0AO
I0A1

1 bit

512

512

36

Flow of Image Data

Section 3-1

Graphic Memory (Plane)

The application of the graphic memory is not fixed.

Density (0 or 1 only):
0AOQ
I0A1

1 bit

512

512

Window Memory (Frame)

Image Memory (Frame)

The window memory is used to draw the windows. It consists of 8 window planes
with a one-to-one relationship to the binary image planes.

The window memory can be treated as 8 memory areas of 512 x 512 x 1 bit
configuration or as a single area with 512 x 512 x 8 bit configuration.

Density:

0 to 255

8 bits

512

The image memory is used to store the raw image direct from the camera or the
8 binary images generated from the look-up table (LUT). The image memory
contents are treated as the raw measurement data.

The image memory can be treated as 8 memory areas of 512 x 512 x 1 bit
configuration or as a single area with 512 x 512 x 8 bit configuration.

Density:

0 to 255

8 bits

512

37

Flow of Image Data

Section 3-1

Shading Memory (Frame)

3-1-2 LUT

38

The shading memory is used for shading compensation. If no shading
compensation is carried out, the memory has no effect on the measurements or
display.

The shading memory can be treated as 8 memory areas of 512 x 512 x 1 bit
configuration or as a single area with 512 x 512 x 8 hit configuration. The shading
master memory has two banks: Bank 0 and Bank 1.

Density:

0 to 255

8 bits

512

LUT is an abbreviation of Look-Up Table. The LUT is a conversion table for
selecting the colors displayed by the display system. The LUT plays the same
role in the system as a palette plays for an artist painting a picture; it selects the
actual color from amongst numerous gradations.

To express monochrome gradations, the OVL assigns 8 bits of data to each
image pixel, that is 28 = 256 gradations.

The LUT is used with the frame-structured memories (VRAM3: image memory,
VRAMA4: shading memory). The gradation in the frame memory is determined by
referring to the LUT.

The LUT is a prewritten memory containing output data corresponding to any
input data address. The F300 uses the LUT conversion function for
preprocessing of binary and raw images and for conversion of the displayed
image.

Flow of Image Data Section 3-1

Related commands and functions:

AUTOLVL ENHANCE

GETBLUT CETLUT

H STGRAM LEVEL

SETBLUT SETLUT

SFTBLUT SFTLUT

LUT data conversion
Input data Output data — Binary conversion: 8 binary images
Graduated image preprocessing
—256 to 255 0to 255 . . .
____ Display image conversion
LUT Plane numbers
Camera

Binary value O or 1 8 binary image planes

Image memory

~N o o0 W N P O

3-1-3 Display LUT

The LUT used to improve the contrast of the display image and change the
gradations (0 to 255) of the raw image inside or outside a window is known as the
display LUT.

Related commands:

GETDLUT
SETDLUT

3-1-4 Filter

The filter is a pre-processing feature which sharpens the edges when the perim-
eter of the measured object is blurred.

39

Display and Measurement Block Diagrams Section 3-2

3-2-1

™~

40

Related commands:

FI LTER
FI LTDATA

Sharpens blurred contrast
around perimeter of image.

Display and Measurement Block Diagrams

Display and Measurement Status of the Camera Image

The image data recorded by the camera is input to the image memory either
directly from the camera ((1) in the diagram) or after LUT conversion of the
image ((2) in the diagram).

Input

Camera /

VRAM 3: | Image
memory

Filter LUT T @)

Window
memory

VRAM 2:

Display controller

VRAM 1;| Graphic
memory

Shading
memory

VRAM 4:

Character
memory

VRAM 0:

Flow of Measured Data

Section 3-3

3-2-2

Display and Measurement Status of the Image Memory Contents

Input from the camera unit is not possible during measurement or display of an
image already stored in memory.

No input from camera unit

Camera
I/F Unit

i

Filter

VRAM 4:

Shading
memory

VRAM 3: | Image
memory
LUT : : %
No input to image memory 5
VRAM 2: | Window S
memory 5
o
B Display
o
@
- o
VRAM 1: | Graphic
memory
Character
VRAM 0: memory

3-3 Flow of Measured Data

Setting Example 1

This section describes how the combination of the window function (W), paint
function (P), and pattern matching function (PM) set with the measure mode
(MMODE) command acts on the binary image planes 0 to 7.

W:
P:
PM:

Window function

Paint function

Pattern matching function

The functions themselves are described in detail in 3-5 Windows.

Function Setting Description
On Window function: ON
P Off Paint function: OFF
PM Off Pattern matching function: OFF

Binary image data

Window memory

data

‘ %
AND
GATE

Binary

Measuring

41

Flow of Measured Data Section 3-3
Setting Example 2
Function Setting Description
Off Window function: OFF
P Off Paint function: OFF
PM Off Pattern matching function: OFF
Binary image data Binary P w
Measuring %
PM
Setting Example 3
Function Setting Description
Off Window function: OFF
P On Paint function: ON
PM Off Pattern matching function: OFF
Binary P
Binary image data
| Measuring (\
Paint window data 7
(Window memory w
plane 7) OR GATE
Setting Example 4
Function Setting Description
On Window function: ON
P On Paint function: ON
PM Off Pattern matching function: OFF
OR Binary W
Binary image data (“
, i
Paint window data Measuring) \/
P

Window memory data

42

Plane and Frame Memory Section 3-4

3-4 Plane and Frame Memory
3-4-1 Plane Memory

The term “plane” is used to describe a memory with 512 x 512 x 1 bit
configuration. Consequently, the character memory, graphic memory, and parts
of the other 3 image memories with 512 x 512 x 1 bit configuration are grouped
under the name “plane memories.”

VRAM Type

0: Character memory Plane (512 x 512 x 1 bit)
1: Graphic memory

2: Window memory Frame (512 x 512 x 8 bit)
3: Image memory

4: Shading memory

1 bit
512

512

3-4-2 Frame Memory

The term “frame” is used to describe an image memory with 512 x 512 x 8 bit
configuration. Consequently, the window memory, image memory, and shading
memory with 512 x 512 x 8 bit configuration memories are grouped under the
name “frame memories.”

4 512

8 bits

512

3-4-3 Binary Image Planes

Each of the eight types of binary image converted by the binary LUT from the
camera or frame memory raw image is known as a binary image plane, and is
denoted by a binary plane number between 0 and 7. The binary image plane has
a one-to-one relationship with the window plane of the same number. All eight
binary image planes are measured simultaneously.

Often the term “plane” is used to include the window plane.

Window plane 7

Binary image plane:

Any of the window planes can be set as the window to be
measured. However, the eighth window (window plane 7)
has a special function as the paint window. Refer to sec-
tions 3-5-2 Paint Window and 3-5-3 Pattern Matching
Window for information about the function of this window.

3-4-4 Mask Bits

Write protection can be enabled by setting a mask bit to prevent data being
changed after it is written to a frame memory.

43

Windows

Section 3-5

3-5

3-5-1

Related commands:

MASKBI T
VRAM Type Description
0: Character memory Plane Mask bits not available
1: Graphic memory
2: Window memory Frame Mask bit can be used to
3: Image memory enable write protection.
4: Shading memory

Example: 27(10) = 00011011)

Plane number 7 6

5 4
Corresponding (oJofof1]
bit l

— |k |w

2 1
[o]1]
|

-— PO

Write protected

Note If the mask bit is set to 1, the corresponding plane is write protected and its
contents cannot be changed.

Write protected

In the example above, planes 0, 1, 3, and 4 are write protected. The other planes
are write enabled, that is the data can be changed.

Windows

Windows define the measurement area on a binary image plane. If some of the
binary image displayed on the screen is not to be measured, a window graphic
can be set to include only the object to be measured so that the binary image
outside the object is deleted before measurement.

o ! | ~ Object to be measured

. ——— Measurement window

" Binary image outside the object
(eliminated before measurement)

Window Planes

Multiple windows can be set for each of the eight binary image planes. In this
case, each of the eight binary image planes is known as a window plane and has
the same number between 0 and 7 as the binary image plane.

The term “plane” may be used to refer collectively to binary image planes and
window planes.

Windows Section 3-5

The eight binary image planes:

Window plane 0 to 7

Multiple windows can be set for each binary image plane. In
this example, three windows are set in a single window plane.

3-5-2 Paint Window

The eighth window (window plane 7) is used exclusively for paint windows. A
paint window can be set in the area to be measured, regardless of whether the
binary image of the measured object is available. For example, by selecting a
paint window over the hole in the measured object, the object is measured as if it
had no hole.

Window plane 7 can be set as the paint window for each binary image plane.
Each of the binary image planes number 0 to 6 can function simultaneously with
normal windows and paint windows. However, normal and paint windows
cannot be mixed in binary plane number 7.

A paint and pattern matching window cannot be set simultaneously in a single
binary image plane.

The eight binary image planes:

The eighth window plane is the special paint win-
dow plane number 7. It cannot simultaneously
contain both normal and paint windows.

Both normal and pattern matching windows can be
set simultaneously in window planes 0 to 6.

| Hole

@/’ Object is considered to have no hole

if the the hole is filled with paint.

3-5-3 Pattern Matching Window

Pattern matching is carried out in window plane 7.

In this case, window plane number 7 is known as the pattern matching window.
During pattern matching, the shape of the pattern matching window is
superimposed on the shape of the measured object binary image and the area of
the non-matching parts is measured.

Window plane 7 can be set as the pattern matching window for each binary
image plane. Each of the binary image planes number 0 to 6 can function
simultaneously with normal windows and pattern matching windows. However,
normal and paint windows cannot be mixed in binary plane number 7.

A paint and pattern matching window cannot be set simultaneously in a single
binary image plane.

45

Drawing Density and Drawing Modes Section 3-6

The eight binary image planes:

The eighth window plane is the special paint win-

dow plane number 7. It cannot simultaneously

contain both normal and paint windows.

Both normal and pattern matching windows can be
set simultaneously in window planes 0 to 6.

3-6 Drawing Density and Drawing Modes
3-6-1 Drawing Density

3-6-2 Drawing Mode

46

The drawing density directly specifies the density when drawing a graphic to
image memory with the graphic control command. Existing contents of the
image memory are overwritten.

Only values 0 and 1 are written to a plane image memory. In this case, specify
the drawing density either as 0 or as a non-zero value (!0). The value 0 is written
to memory if the drawing density is specified as 0. The value 1 is written to the
image memory if the drawing density is specified as a hon-zero value.
Drawing density values between 0 and 255 can be written to a frame image
memory. These values are expressed as 8-bit binary values. Each of these bits
corresponds to one plane of the frame memory. For example, if the drawing
density is 105, which is expressed as 01101001 in binary, 1 is written to planes 0,
3, 5, and 6, and 0 is written to planes 1, 2, 4, and 7.

VRAM Type Density

0: Character memory Plane Oorl
1: Graphic memory

2: Window memory Frame 0to 255
3: Image memory
4: Shading memory

Example: 105(10)= 01101001 2y

Plane number 7 6 5 4 3 2 1 0
E_orresponding\0\0\0\1\1\0\1\1\
it

0: Off
1. On

The drawing mode carries out logical operations on the graphic in the graphic
memory and the graphic data being written to the graphic memory when a
graphic is drawn to image memory with the graphic control command.

The following three modes can be specified:

OR: the drawn graphic is ORed with the image memory contents
XOR: the drawn graphic is XORed with the image memory contents
NOT: the contents of the image memory are cleared

200

Image memory contents = 200

Run Length

Section 3-7

The results of these logical operations are shown below.

200

255

255

200 255 200 0

55 0

3-7 Run Length

OR XOR NOT

A binary image can be considered as a collection of line segments in the X and Y
directions. The length of these line segments is known as the run length. The
F300 can measure two types of run length: the simple run length and the detailed
run length.

Detailed run length: The lengths of lines AB and CD are determined separately.
Simple run length: The total length of lines AB and CD is determined.

’— X Concave Object

Both the simple run length and detailed run length give the same result for the
length of the line segment AB.

’—‘ X Convex Object
Y A\@/B

3-7-1 Simple Run Length

The simple run length is the total length of line segments at various Y-coordinate
positions. Measurement is possible in the X direction only.

If multiple line segments exist at a single Y coordinate, the individual lengths of
each section cannot be determined. If measurements are made on a convex
object with no hole, the simple run length is identical to the detailed run length in
the X direction.

If a concave object is measured, the simple run length includes the detailed run
length.

Related commands and functions:

MEASURE
MMODE
RUNL

a7

Labelling

Section 3-8

It is not possible to determine the individual lengths of more than one line
segment at a single Y-axis coordinate axis position, like AB and CD in the

diagram for example.
{» X (512 pixels)

Y
(484 pixels)

A B C D

3-7-2 Detailed Run Length

3-8 Labelling

48

The detailed run length is the individual length of each line segment at an X- or
Y-coordinate position. The number of detailed run length data depends on the
size of the binary image and complexity of the shape.

Related commands and functions:
MEASURE

RMODE
RDATA

Y
(484 pixels)

(» X (512 pixels)

Labelling involves applying serial numbers starting from 0 to unlinked binary
images. Complex applications can be handled using the results of labelling and
other measurement properties.

Labelling can be used to determine how many measured objects are contained
in the screen. The maximum label number corresponds to the number of
objects. The properties of each object can be determined from the data after
labelling, giving more detailed information.

Label 1: Measured object 1
Label 2: Measured object 2
Label 3: Measured object 3
Label 4: Measured object 4
Label 255: Measured object 255
Label 1
Label 2
Label 4 <:> <:>
<:> Label 3
..... Label 255

Two methods are used to determine the linked status of objects during labelling:
Four-neighbor evaluation and eight-neighbor evaluation.

In four-neighbor evaluation, pixels are considered to be linked into a single
object if the four pixels on the top, bottom, left, and right of the evaluated pixel

Scrolling Section 3-9

have the same density. The pixels in the diagonal corners of the evaluated pixel
are ignored.

In eight-neighbor evaluation, pixels are considered to be linked into a single
object if all adjacent pixels have the same density.

Four-neighbor evaluation omQo
NN |
(Considered as a single object.)[] l [

Eight-neighbor evaluation EENE
| NN |
(Considered as a single object.) il H H

M : These pixels all have the same density.

Example:

Four-neighbor evaluation: Considered as five objects
Eight-neighbor evaluation: Considered as one object

ogoomamn
NN B pEN
| pEpEEEE NN
N N B REEN

Related commands:

LABEL LPUTI MG
LSORT LDATA
LPO NT

3-9 Scrolling
3-9-1 Window Scrolling

If the position of the measured object moves inside the screen, the position of the
window must be moved accordingly. This operation is known as positional
displacement compensation.

The following two methods are possible for compensating for positional
displacement:

e Compensation by scrolling the window
¢ Rotating the image of the measured object

The F300 uses only the first method, compensation by scrolling the window, as
this method overcomes the errors in measurement results which occur when the
image of the measured object is rotated.

Related command: WSCRCOLL

Window

2: Rotation

RS

1: Window scrolling

3-9-2 Shading Scrolling

If the background to the measured object has uneven brightness and the
position of the background changes inside the screen, shading compensation is
required to move the shading memory contents accordingly. This operation is
known as shading scrolling.

49

I mage Cut-off

Section 3-11

Related command:
SSCROLL

Background | - Shading scrolling is carried out if

3-10 Fill Measurement

The measurement of an object containing a hole as if it had no hole is known as
fill measurement. However, accurate measurements ignoring the hole only are
only possible for measured objects with a convex outline. A concave outline is
defined as a shape in which no tangent crosses the outline itself. Consequently,
a hole in a circle, triangle, or square outline is ignored accurately, but this is not
possible with a star-shaped or U outline, for example.

©

the position of an unevenly-lit
background moves.

Hole is ignored

- >

©

Depression is ignored

3-11 Image Cut-off

Removing images which coincide with the edge of the window is known as
image cut-off. Images fully contained in the window remain unchanged.

The F300 uses labelling to carry out this feature.

50

Related commands:

RMODE LABEL
LPUTI MG LSORT
LDATA LPO NT
Window
Label 0 /
Label 1 Label 2

Image cut-off

During labelling, cut-off images are skipped, so that in this case only Label 1 re-

mains.

Scan Measurement Section 3-12

3-12 Scan Measurement

Scan measurement allows measurement of the number and length of measured
objects along the binary image of any shaped line in the image memory.
The following shapes can be scanned:

e Ellipses (including circles)

¢ Polygons

¢ Straight lines

¢ Polygonal lines

Related commands and functions:

SCAN SCANSET

SDATAL SDATA2
Example:
The number of teeth and various scan lengths can be measured on this
gearwheel.

51

SECTION 4
Reference

This section provides detailed information on the commands and functions. Examples are also provided.

53

ARC Reference

Section 4

ABS

ABSol ut e

(Function)
Action

Format

Example

Description

AKCNVS

Determines an absolute value.

ABS (numeric expression)
A = ABS (-7)
Assigns 7, the absolute value of -7, to variable A.

Determines the absolute value of the specified humeric expression.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The ABS function always returns a double-pre-
cision real number.

Ank Kanji CoNVert$

(Function)
Action

Format

Example

Description

ARC

Converts 1-byte characters in a character string to 2-byte characters.

AKCNVS$ (character string)

Cs = AKCNVS ("OWL")
Assigns “OVL" to variable C$.
The AKCNVS$ function converts all 1-byte characters in a character string to a

2-byte equivalent. The AKCNV$ function returns a character string containing
2-byte characters only.

Specify a character string containing a mixture of 1- and 2-byte characters as a
character variable or character constant with the character string variable.

The KACNV$ function has the opposite action to the AKCNV$ function.
KACNV$ converts 2-byte characters in a character string to a 1-byte equivalent.

ARC

(Command)
Action

Format

Example

Description

Draws an arc in VRAM.

ARC X, v, R, start angle, end angle, VRAM [, [page#] [, drawing density or
drawing mode]]

ARC 200, 250, 45, 35, 75, 2,, 128

Draws an arc on Plane 7 of the window memory with center coordinates (200,
250), radius (45), start angle (35%), and end angle (75%).

The ARC command draws an arc clockwise between the start and end angle
around the center coordinates (X, Y) with the specified radius (R). Start angle
and end angle specified in degrees.

Specify the VRAM where the arc is drawn with a number, as follows.
0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory
Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

ATTR Reference

Section 4

ASC

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory.

0 : O written to memory
10: 1 written to memory
The drawing mode settings operate as follows.

OR: The current contents of the image memory ORed with 255 are written to
memory.

NOT: 0 is written to memory
XOR: The current contents of the image memory are inverted.
The default value for the drawing mode is OR.

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

ASC |

(Function)
Action

Format

Example

Description

ATN

Determines the character code of the first character in a character string.

ASC (character string)

A = ASC (" BASIC')

Assigns the character code (66) for the first letter (B) of the character string
(BASIC) to variable A.

Returns the decimal character code of the first character in the specified
character string.

The CHRS$ function has the opposite action to the ASC function. CHRS returns
the character corresponding to the specified character code.

Ar cTaNgent

(Function)
Action

Format

Example

Description

ATTR

Determines the arctangent (arctan) of a value.

ATN (numeric expression)

A = ATN(1)*180/ &

Determines the arctan of 1 and assigns the corresponding angle (455) to
variable A.

The ATN function returns the arctangent value in radians between —p/2 and p/2.
Multiply this value by 180/p to convert the returned value to degrees.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The ATN function always returns a double-pre-
cision real number.

ATTRI but e$

(Function)
Action

Format

Example

Determines the write protect attribute of the specified file.

ATTRS (filename or [#] filet)

ATTRI BUTE$ = ATTR$(” FILE. BAS")

Determines the write protect attribute of the file FILE.BAS and assigns the result
to variable ATTRIBUTES.

55

BACKDISP Reference

Section 4

Description

AUTO

Determines if the file specified with a filename or file# is write protected or write
enabled and returns a letter indicating the status.

Specify the filename stored in a memory card as a character string. Specify the
file# as the number in which the file was opened with the OPEN statement.
The ATTR$ function returns a 2-character character string (attribute code)
corresponding to the write protect attribute assigned to the file specified with the
filename or file#. The attribute codes are described in the table below.

Attribute code Meaning

The file has no write protect attribute allocated. The file specified
with the filename or file# is write enabled.

" P The file specified with the filename or file# is write protected.

"E” The file specified with the filename or file# is coded.

_indicates a blank

AUTOmat i ¢ _nunberi ng

(Command)
Action

Format

Example

Description

AUTOLVL

Automatically generates line numbers when the program is keyed in.

AUT O [initial value] [,increment]

AUTO 1000, 20

The line numbers 1000,1020, 1040, ... are displayed automatically.

When the AUTO command is input, the line number initial value is displayed at
the start of the next line and the cursor stops to the right of this line number. Sub-

sequently, each time the Return Key is pressed to input a line, the present line
number plus the specified increment is displayed at the start of the next line.

The default value of the initial value is 10. The default value of the increment is
10. Both the initial value and increment may be omitted.

If a line number already exists, an asterisk (*) is displayed after the line number.
Press the CTRL+C or STOP Keys to end automatic line number generation.

AUTO LeVel

(Function)
Action

Format

Example

Description

BACKDI SP

Determines the ideal binary level from density histogram data.

AUTOLVL (algorithm, array name, qualifier)

AL = AUTOLVL (0, H 0)
The ideal binary level will be obtained from the histogram data of array H.
The AUTOLVL determines the ideal binary level from the array data, which is

specified with the array name, where the histogram data obtained with the
HISTGRAM command is stored.

Always set the algorithm to O.

The qualifier specifies the first element used in the histogram data array.
Normally set to 0.

BACKar ound DI SPI ay

(Command)
Action

Format

Example

56

Sets the type of display for the image outside the window.
BACKDI SP display image [, [binary image plane#] [, binary reverse]]

BACKDI SP 2
Sets a mask image (black) for the image outside the window.

BCOPY

Reference

Section 4

Description

BCOPY

BACKDISP sets how the image outside the window is displayed.
Set the display image to one of the following values.

0: Raw image
1: Binary image
2: Mask image (black)

If a binary image is specified as the display image, set the binary image plane
number between 0 and 7 to specify the plane for binary conversion. The binary
image corresponding to the specified binary image plane# is displayed outside
the window. The default value is 0.

The binary reverse value can be specified if a binary image is selected, as fol-
lows.

0: Normal monochrome display
1: Reversed monochrome display

The default value is 0.

The BACKDISP command sets the display only and does not affect the
measurements.

Bi nary COPY

(Command)

Action

Format

Example

Description

Copies a binary image in VRAM.

BCOPY VRAML, [page# 1], [plane# 1], VRAM2, [page# 2], [plane# 2] [, [X1] [,
YL] [[X21 [, [Y2] [, XT [, YT

BCOPY 2,, 0, 2,, 1
Copies the entire Plane 0 in window memory to Plane 1.

BCOPY copies a binary image between VRAMs.

Specify the numbers of the copy source and destination VRAMSs, with VRAM1
and VRAM?2, as follows.

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the setting for the page# 1 and page# 2 or set them to 0.

Specify the plane number of the copy source and destination VRAMSs, with
plane# 1 and plane# 2.

To enclose the copy source image in a rectangular region, specify the top-left
and bottom-right coordinates as X1, Y1 and X2, Y2, respectively. The default
value of X1 and Y1 is 0 and the default value of X2 and Y2 is 511.

Specify the top-left coordinates of the copy destination copy start region with X,
Y. The default values of X, Y are 0,0.

When copying from a plane VRAM to a frame VRAM, if the plane# of the copy
destination (plane# 2) is specified, only the specified plane is copied, otherwise
all planes are copied.

The plane# of the copy source VRAM (plane# 1) must be specified when
copying from a frame VRAM to a plane VRAM. Data in planes write protected
with the MASKBIT command remains unchanged when data is copied to a
frame VRAM.

57

BEEP Reference

Section 4

BCOPY2

Bi nary COPY2

(Command)

BEEP

Action

Format

Example

Description

Makes enlarged and reduced copies of binary images in VRAM.

BCOPY2 VRAM1, [page# 1], [plane# 1], VRAM2, [page# 2], [plane# 2] [,
[XS1][, [YS1][, [XS2] [, [YS2] [, [XD1] [, [YD1] [, [XD2] [, YD2]IIII

BCopPY2 2,, 0, 2,, 1, 100, 100, 200, 200, 200, 200, 400,
400

Enlarges by a factor of 2 the rectangular region with corner coordinates
(100,100), (200,200) on plane 0 of the window memory and copies it to the
rectangular region with corner coordinates (200,200), (400,400) on plane 1.

BCOPY2 makes enlarged and reduced copies of binary images between
rectangular regions in VRAM.

Specify the numbers of the copy source and destination VRAMSs, with VRAM1
and VRAM?2, as follows.

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the setting for the page# 1 and page# 2 or set them to 0.

Specify the plane number of the copy source and destination VRAMSs, with
plane# 1 and plane# 2.

Specify the top-left and bottom-right coordinates of the copy source rectangular
region as XS1, YS1 and XS2, YS2, respectively. The default value of XS1 and
YS1 is 0 and the default value of XS2 and YS2 is 511.

Specify the top-left and bottom-right coordinates of the copy destination
rectangular region as XD1, YD1 and XD2, YD2, respectively. The default value
of XD1 and YD1 is 0 and the default value of XD2 and YD2 is 511.

When copying from a plane VRAM to a frame VRAM, if the plane# of the copy
destination (plane# 2) is specified, only the specified plane is copied, otherwise
all planes are copied.

The plane# of the copy source VRAM (plane# 1) must be specified when
copying from a frame VRAM to a plane VRAM. Data in planes write protected
with the MASKBIT command remains unchanged when data is copied to a
frame VRAM.

BEEP

(Command)

58

Action
Format

Example

Description

Turns the buzzer on and off.

BEEP [switch]

BEEP 1
The buzzer sounds.

The BEEP command turns the buzzer on and off.
Specify the switch parameter as 0 or 1, as follows.

0: Stop the buzzer.
1: Continuously sound the buzzer.

The buzzer sounds for a fixed time if the parameter is omitted.

After the buzzer is turned on, it can be turned off again only with the BEEP com-
mand. The buzzer remains on if program operation stops.

BUSY Reference

Section 4

BOX

BOX

(Command)

BUSY

Action

Format

Example

Description

Draws a rectangle in VRAM.

BOX x1, Y1, X2, Y2, VRAM [, [page#] [,[drawing density or drawing mode] [,
lineart]]]
BOX 0, 0, 128, 255, 2,, 128, O
Draws a rectangle on Plane 7 of the window memory with opposing corner
coordinates (0,0), (128,255).
The BOX command draws a rectangle between the opposing corner
coordinates (X1, Y1) and (X2, Y2).
Specify the VRAM where the rectangle is drawn with a number, as follows:

0: Character memory

1: Graphic memory

2: Window memory

3: Image memory

4: Shading memory
Omit the page# or set to O.
Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.
The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : 0 written to memory

10: 1 written to memory
The drawing mode settings operate as follows.

OR: The current contents of the image memory ORed with 255 are written to

memory.

NOT: 0 is written to memory

XOR: The current contents of the image memory are inverted.

The default value for the drawing mode is OR.
Specify with the lineart parameter if the rectangle is an outline only or filled.

0: Filled rectangle

1: Rectangle outline only

The default value is 0 (filled).
When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

BUSY

(Command)

Action

Format
Example

Description

Controls the BUSY signal output status.

BUSY oor1

BUSY 1

Turns ON the BUSY signal output of all connected Terminal Block Unit or Parallel
I/O Units.

The BUSY command turns the BUSY signal output ON and OFF for the Terminal
Block and Parallel I/0O Units.

Set the parameter to 0 to turn OFF the BUSY signal or to 1 to turn ON the BUSY
signal.

When multiple Terminal Block or Parallel /O Units are connected, the BUSY
signals are controlled simultaneously for all Units.

59

CAMMODE Reference

Section 4

CALL

CALL

(Command)

Action

Format

Example

Description

CAMCHK

Calls a subroutine defined between the SUB and END SUB commands.

CALL 1abel (argument [, argument...])

CALL *SUB1 (PARAML, PARAMRS, 1)
Calls the subroutine SUB1.

The CALL command calls subroutines in which local variables are used.

The label parameter specifies a label designated with the SUB command.
The arguments specify data to be transferred to the subroutine. The arguments
can be any type of variable, constant, or expression, but the argument type must
match the type of argument used with the SUB command.

If a variable specified as an argument is changed in the subroutine, the value of
the argument changes simultaneously. No logical limitation is placed on the
number of arguments. However, the command line can physically
accommodate up to 255 characters only.

An entire array cannot be used as an argument. Data from an array can be used
as an argument by specifying individual elements of the array in the form: array
name(qualifier). If multiple arguments are specified with the CALL command, no
variable name can be used more than once.

CAMer a CHecK

(Function)

Action

Format

Example

Description

CANVERA

Determines the connection status of the camera specified with the camera
number.

CAMCHK (camera#)
A = CAMCHK (1)
Assigns the connection status of camera#1 to variable A.

The CAMCHK function determines the status of the camera specified with the
camera number (0 to 7), and returns a value as follows:

0: Connected
—1: Not connected

CANMERA

(Command)

Action

Format
Example

Description

CAVMODE

Switches cameras.

CANMERA camera#
CAVERA 2
Switches to camera# 2.

The CAMERA commands switches to the camera specified by the camera
number (0 to 7).

The F300 cannot simultaneously receive inputs from multiple cameras. Only the
image from the camera selected with the CAMERA command is processed.

CAMer a MODE

(Command)

60

Action

Format

Example

Selects the image output from a Camera I/F Unit.

CAMMODE output image

CAMVODE 1

Selects the image from the Camera I/F Unit internal memory as the output
image.

CHAIN Reference

Section 4

The CAMMODE command is valid for the Camera I/F Unit (normal/simulta-
neously) and Camera I/F Unit (shutter/simultaneously) only.

Both the Camera I/F Unit (normal/simultaneously) and Camera I/F Unit (shutter/
simultaneously) have a built-in image memory able to hold one image screen
from a single camera. The CAMMODE selects if the image output from the Cam-
era I/F Unit to the IMP Unit is the image output directly from the camera or the
image from the Camera I/F Unit internal video memory.

The parameter of the CAMMODE command selects the output image, as
follows:

0: Output the camera image directly.
1: Output the image from the internal video memory.

Images are written to the video memory with the FLASH command.

If multiple Camera Units with internal memory are connected, the setting with the
CAMMODE command applies to all Units.

Convert DouBLe

Description
(Function)

Action

Format

Example

Description

CHAI N

Converts a value to a double-precision value.

CDBL (numeric expression)

DBL# = CDBL(A!)
Converts the value of the single-precision real number Al to a double-precision
real number and assigns it to the double-precision real number variable DBL#.

The CDBL function returns the specified numeric expression converted to a
double-precision real number.

The CDBL function converts values to a double-precision real value. It does not
change the number of significant digits of the returned value. Consequently, the
precision of the returned value is the same as the precision of the value before
conversion.

The following type conversion functions are also available:

CINT function: Converts a value to an integer.
CLNG function: Converts a value to a long integer
CSNG function: Converts a value to a single-precision real number.

CHAI N

(Command)
Action

Format

Example

Description

Calls and transfers control to a specified program.

1. CHAI N “filename” [, line#] [, ALL]
2.CHAI N MERGE rfilename” [, line#] [, ALL] [, DELETE line# 1 — line# 2]

CHAI' N MERGE " PROL. BAS”, 1000, ALL

Merges the program PRO1.BAS with the current program and executes it from
line 1000. All variables remain unchanged.

The CHAIN command reads the program with the specified flename from the
memory card and executes the program from the specified line#.

If no line# parameter is specified, the program is executed from the beginning.

If the command is specified in format 1, the current program is cleared before the
specified program is read.

If the command is specified in format 2, the current program is merged with the
new program. All variables remain unchanged if the ALL parameter is specified.

61

CHDIR ..

.. Reference

Section 4

CHANGE

If ALL is not specified, all numeric variables become 0 and character variables
become blank (null). Use the COMMON command to leave some of the
variables unchanged.

If the DELETE parameter is used, the program lines between the specified line#
1 and line# 2 are deleted before the programs are merged.

Labels can be used instead of numbers for the line#, line# 1, and line# 2
parameters.

CHANGE scene

(Command)

Action

Format

Example

Description

CHDI R

Changes the measuring conditions to the scene setting conditions set in the
Menu mode.

CHANGE scene#

CHANGE 2
Switch to the scene 2 measuring conditions.
The CHANGE command refers to the scene setting data previously set in the

Menu mode and changes the setting data to the scene specified with the
scenet.

The following items can be changed:
e Drawing the window graphic (WINDOW)
¢ Measuring mode for each binary plane (MMODE)
e Camera selection (CAMERA)
» Displayed image (DISP, FILTERIN)
* Window display image (WDISP)
o Filtering (FILTER, FILTDATA)
e Binary level (LEVEL)

However, the following settings can only be made from the Menu mode, they are
not possible with the CHANGE command:

o Measurement with multiple camera
¢ Window displacement compensation
¢ Shading displacement compensation
* Window measurement items

¢ Window evaluation conditions

If measurement with multiple cameras is selected in the Menu mode, the camera
specified in the Menu mode for the display is used with the CHANGE command.

CHange DI Rectory

(Command)

62

Action

Format

Example

Changes the current directory.

CHDI R directory name

CHDIR ".. SRC

Switches the current directory to directory SRC, which is on the same
hierarchical level as the current level (that is, both directories are contained in
the same directory on the next level of the hierarchy.)

CINT Reference

Section 4

Description Specify the directory name parameter as a character string. Specify the name of
a directory existing on the memory card. An error (Path not found) occurs if the
specified directory does not exist on the memory card.
To specify an absolute path name for the directory, delimit the directory names
with ¥ signs. The total length, including the ¥ signs, must not exceed 127
characters.
Specify the directory name as [“.."] to switch the current directory up to the next
hierarchy.
CHR$ CHaRacter $
(Function)
Action Determines the character corresponding to a character code.
Format CHRS$ (numeric expression)
Example A$ = CHR$ (97)
Assigns the character “a” corresponding to character code 97 (= 61H) to variable
AS.
Description The CHRS$ functions returns the 1-byte character or the control code
corresponding to the character code.
Specify the numeric expression as an integer between 0 and 255.
The ASV function ASC has the opposite action to the CHR$ function. ASC
returns the decimal character code corresponding to a character.
Cl NI Convert | NTeger
(Function)
Action Converts a value to an integer.
Format Cl NT (numeric expression)
Example SEl % = CI NT (A#)
Converts the value of the double-precision real number A# to an integer and
assigns it to the integer variable SE|%.
Description The CINT function rounds off the decimal places of the specified numeric ex-

pression and returns an integer.
An error occurs if the integer returned by the CINT function does not lie between
—-32768 (-216) and 32767 (216-1).
The following type conversion functions are also available:
CDBL function: Converts a value to a double-precision real number.
CLNG function: Converts a value to a long integer
CSNG function: Converts a value to a single-precision real number.
The FIX and INT functions are similar to the CINT function. However, the FIX
function simply cuts off (rounds down) the decimal places from the specified val-
ue. The INT function also rounds down the specified value, but this function
never returns a value larger than the value specified with the numeric expres-
sion.
Examples of the actions of the FIX, INT, and CINT function are shown in the table
below.

Specified function Returned value
Positive numeric FI X (1.7) 1
expression INT (1.7) 1
CINT (1.7) 2
Negative numeric FI X (-1.7) -1
expression INT (-1.7) -2
CINT (-1.7) -2

63

CIRCLE .

.. Reference

Section 4

Cl RCLE

Cl RCLE

(Command)

Action

Format

Example

Description

Draws a circle in VRAM.

Cl RCLE x, Y, R, VRAM, [, [[page#]] [, [drawing density or drawing mode] |,
lineart]]]

Cl RCLE 128, 255, 25, 2,, 128, O
Draws a circle on Plane 7 of the window memaory with center coordinates (128,
255) and radius (25).
The CIRCLE command draws a circle around the center coordinates (X,Y) with
the specified radius (R).
Specify the VRAM where the circle is drawn with a number, as follows:
0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory
Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : 0 written to memory

10: 1 written to memory
The drawing mode settings operate as follows.

OR: The current contents of the image memory ORed with 255 are
written to memory.

NOT: NOT: 0 is written to memory
XOR: XOR: The current contents of the image memory are inverted.
The default value for the drawing mode is OR.
Specify with the lineart parameter if the circle is an outline only or filled.
0: Filled circle
1: Circle outline only
The default value is O (filled).

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

CLOSE Reference

Section 4

CLEAR

CLEAR

(Command)
Action

Format
Example

Description

CLNG

Initializes variables.

CLEAR
CLEAR

The CLEAR command initializes all numeric variables to 0 and all character
variables to a blank (null).

Change to LoNG i nt eger

(Function)
Action

Format

Example

Description

CLOSE

Converts a value to a long integer.

CLNG (numeric expression)

A& = CLNG B#)

Converts the value of the double-precision real number B# to a long integer and
assigns it to the long integer variable A&.

The CLNG function rounds off the decimal places of the specified numeric ex-
pression and returns a long integer.

An error occurs if the long integer returned by the CLNG function does not lie
between —2147483648 (—231) and 2147483647 (231-1).

The following type conversion functions are also available:
CDBL function: Converts a value to a double-precision real number.
CINT function: Converts a value to an integer.
CSNG function: Converts a value to a single-precision real number.

CLOSE

(Command)
Action

Format

Example

Description

Closes an open file.
CLCSE f[file# [, file#] ...]

CLCSE #1
Closes the file which was opened as file# 1.

The CLOSE command closes a file previously opened for data 1/O.
Specify the same file# used when the file was opened with the OPEN command.

After afile is closed with the CLOSE command, data I/0O operations on the file
are not possible until the file is reopened with the OPEN command.

After afile is closed with the CLOSE command, the same file# can be used to
open a different file with the OPEN command. Alternatively, the closed file can
be reopened with the original file#.

Multiple file numbers (file#) can be specified to close multiple files simultaneous-
ly with a single CLOSE command. All open files are closed if the file# is omitted.
Similarly, all files are closed automatically when the END, NEW, or STOP com-
mand is executed.

When a file opened for data output is closed, all data remaining in the file buffer is
written to the file before it is closed. The CLOSE command must be used to
ensure this data is correctly written to the file.

65

COLOR@.. Reference Section 4
CLS CLear Screen
(Command)
Action Clears the specified VRAM.
Format CLS [VRAM [, [page#] [, plane#]]]
Example CLS 2,, 3
Clears plane 3 of the window memory.
Description The CLS command clears the specified VRAM.
Specify the VRAM to be cleared with a number, as follows.
0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory
Omit the page# or set to 0.
Specify the plane to be cleared with the plane# parameter. All planes are cleared
if this parameter is omitted. When a frame memory is specified, the contents of
planes write protected with the MASKBIT command remain unchanged.
(Command)
Action Changes the text display. character attribute.
Format COLOR attribute code
Example COLCR 2
Sets the character attribute to overline.
Description The COLOR command changes the character attribute to the specified

COLOR@

attribute.
Specify the attribute with a number, as follows.
0: Clear attribute
2: Overline
4: Underline
7: Reverse

COLOR@

(Command)
Action

Format

Example

Description

66

Changes the character attribute within a rectangular region of the text display.

COLOR@X1, Y1) — (X2, Y2) [attribute code]

CO.CR@ (0, 0) - 31, 5), 7
Reverses the characters between line 0, character O and line 5, character 31.

The COLOR@ command changes the character attribute to the specified
attribute within the rectangular region between the opposing corners specified in
character coordinates (X1, Y1) and (X2, Y2).

Specify the horizontal character coordinates X1 and X2 as an integer between O
and 63 and the vertical character coordinates Y1 and Y2 between as an integer
between 0 and 24.

COMMON . Reference

Section 4

Specify the attribute code with a number, as follows.
0: Clear attribute
2: Overline
4: Underline
7: Reverse
The default value is 7 (reverse).

COM ON OFF/ STOP COMuni cati on OV OFF/ STOP

(Command)

Action

Format

Example

Description

COM(n) ON

COM (n) OFF

COM (n) STOP

CAVMON

Note

Enables, disables, or stops interrupts from the RS-232C.
COM (RS-232C port#) ON or OFF or STOP
COM1) ON

Permits branching to the interrupt routine when input data is received via the
RS-232C channel 0.

Specify the port# as 1 or 2. The default value is 1. The port# is represented by n in
the description below.

Branches to the interrupt subroutine at the specified line# or label when input
data is received via the specified port#. The line# or label must be specified with
the ON COM GOSUB statement before the COM(n) ON command is executed.
In addition, use of the RS-232C communication port must be declared with the
OPEN command before the COM(n) ON command is executed.

Example:
10 OPEN " COMt 9600N 82N" AS #1

20 ON COM GOSUB *LABEL1
30 COM ON

70 COM OFF

100 *LABEL1

200 RETURN

Disables branching to the interrupt routine when input data is received via the
specified port#.

Temporarily stops operation when input data is received via the specified port#.
Operation does not branch to the interrupt subroutine. Operation will branch to
the interrupt subroutine after the COM (n) ON command is executed.

The COM (n) OFF status must be set before the program execution ends.

CAVMMON

(Command)

Action

Format

Example

Transfers variables to a program linked with the CHAIN command.

COMMON variable name [, variable name ...]

COMON X, Y, A$, B
Transfers variables X, Y, A$ and B to a specified program in the CHAIN com-
mand.

67

CONT Reference

Section 4

Description

CONSOLE

The COMMON command transfers variables to another program. The
COMMON command is used as a pair with the CHAIN command. The
COMMON statement must be declared before the CHAIN statement, that is, at
the start of the program.

Variables must not be duplicated in a single COMMON command.
Add parentheses to declare array variables, e.g., B().

Use the ALL parameter in the CHAIN statement to transfer all variables to the
linked program.

Example:
10 DI M B(100), C(10), D(10)

50 CHAIN "TEST. BAS",, ALL

CONSOLE

(Command)

CONT

Action

Format

Example

Description

Sets the text display mode.

CONSQOLE [[scroll start line] [, [number of scroll lines] [, [function key display
switch] [, character mode]]]]

CONSQLE ,,, 1

Sets the text display mode to the graphic character mode and hold all other
parameter settings.

The CONSOLE command sets the text display mode.

The area designated by the scroll start line and number of scroll lines parame-
ters. The screen clear operation acts on this specified scroll area. The default
value for the scroll start line is 0. If the number of scroll lines is not specified, the
previous setting is maintained.

The function key display switch setting specifies whether the function key menu
is displayed on the bottom line of the screen. The function key menu is not
displayed if this parameter is set to 0. If the function key display switch is not
specified, the previous setting is maintained.

Set the character mode to 1 to select the graphic character mode. This mode
permits display of the graphic characters (character codes &H80 to &H9F and
&HEO to &HF7) but disables the Japanese character display.

Set the character mode to 0 to enable the Japanese character display but
disable display of the graphic characters. If no setting is specified, the previous
setting is maintained.

CONTI nue

(Command)

68

Action

Format

Example

Description

Continues execution of a stopped user program.

CONT

CONT
Restarts program execution.

The CONT command is a direct command to continue execution of a user
program stopped by pressing the STOP or CTRL+C Keys or by executing the
STOP command.

Operations such as printing the variable names in the direct mode are possible
while the program is stopped. However, a program cannot be continued if it was
modified while execution was stopped.

CURSOR ..

Reference

Section 4

COS

COSI ne

(Function)

CSNG

Action
Format

Example

Description

Determines the cosine of an angle.

CCS (numeric expression)

Al = COS(60*3. 14159/ 180)

Assigns the cosine of 60% (0.50000) to variable Al.
Returns the cosine as a value between -1 and 1.
The angle in the numeric expression is set in radians.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The COS function always returns a double-
precision real number.

Convert Si Nd e

(Function)

CSRLI

Action

Format

Example

Description

N

Converts a value to a single-precision value.

CSNG (numeric expression)

SNG = CSNG (A#)

Converts the value of the double-precision real number A# to a single-precision
real number and assigns it to the single-precision real number variable SNG!.
The CSNG function returns the specified numeric expression converted to a
single-precision real number.

The CSNG function converts values to a single-precision real value between
—1.70141E+38 and —1.70141E+38. An error occurs if the value lies outside this
range.

The following type conversion functions are also available:
CDBL function: Converts a value to a double-precision real number.
CLNG function: Converts a value to a long integer
CINT function: Converts a value to an integer.

Cur SoR LI Ne

(Function)

Action

Format

Example

Description

CURSOR

The CSRLIN function determines the number of the line where the character
cursor is positioned.

CSRLI N

LN% = CSRLI N
Assigns the current cursor line position to the variable LN%.

Returns the line position of the character cursor (the Y-axis character
coordinate).

The value returned is between 0 and 24.

Use the POS function to determine the cursor character position along the line.

CURSOR

(Command)

Action
Format

Example

Draws the cross cursor in VRAM.

CURSOR X, Y, angle, VRAM [,[page#][,drawing density or drawing mode]]

CURSCR 200, 250, 45, 1

Draws a cross cursor at an angle of 45% in the graphic memory at coordinate
position (200,250).

69

CVD Reference

Section 4

Description The CURSOR command draws a cursor at coordinate position (X,Y) at the
specified angle.
The angle parameter specifies the tilt angle of the cross cursor.
Specify the VRAM where the cursor is drawn with a number, as follows.
0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory
Omit the page# or set to 0.
Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.
The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:
0 : 0 written to memory
10: 1 written to memory
The drawing mode settings operate as follows.
OR: The current contents of the image memory ORed with 255 are
written to memaory.
NOT:. NOT: 0 is written to memory
XOR: XOR: The current contents of the image memory are inverted.
The default value for the drawing mode is OR.
When writing to a frame memaory, the contents of planes write protected with the
MASKBIT command remain unchanged.
CvD ConVert to Doubl e
(Function)
Action Converts an 8-byte character string to a double-precision real number.
Format CVD (8-byte character string)
Example C#t = CVD(C3)
Converts a character-type numeric data variable C$ created with the MKD$
function to a double-precision real number and assigns it to variable C#.
Description The CVD function returns the value of an 8-byte character string converted to a

70

double-precision real number.

Because numeric data cannot be handled in a random access file, a a double-
precision real number must be converted to a character-type numeric data
variable (character string) with the MKD$ function before it is written to a random
access file. The CVD function converts character-type numeric data read from a
random access file back to a double-precision real number.

The CVD function has the opposite action to the MKD$ function. The MKD$
function converts numeric data to a character string.

Character-type numeric data is read from a random access file with the GET#
command to the variable areas defined with the FIELD# command in the file
buffer.

CVS Reference

Section 4

CVl

ConVert to |Inteqger

(Function)
Action

Format

Example

Description

CVL

Converts a 2-byte character string to an integer.

CVvI (2-byte character string)

A% = CVI (A$)
Converts a character-type numeric data variable A$ created with the MKI$
function to an integer and assigns it to variable A%.

The CVI function returns the value of a 2-byte character string converted to an
integer.

Because numeric data cannot be handled in a random access file, an integer
must be converted to a character-type numeric data variable (character string)
with the MKI$ function before it is written to a random access file. The CVI
function converts character-type numeric data read from a random access file
back to an integer.

The CVI function has the opposite action to the MKI$ function. The MKI$
function converts numeric data to a character string.

Character-type numeric data is read from a random access file with the GET#
command to the variable areas defined with the FIELD# command in the file
buffer.

ConVert Long i nteger

(Function)
Action

Format

Example

Description

CvS

Converts a 4-byte character string to a long integer.

CVL (4-byte character string)

A& = CVL(AS$)
Converts a character-type numeric data variable A$ created with the MKL$
function to a long integer and assigns it to variable A&.

The CVL function returns the value of a 4-byte character string converted to a
long integer.

Because numeric data cannot be handled in a random access file, a long integer
must be converted to a character-type numeric data variable (character string)
with the MKL$ function before it is written to a random access file. The CVL
function converts character-type numeric data read from a random access file
back to long integer data.

The CVL function has the opposite action to the MKL$ function. The MKL$
function converts numeric data to a character string.

Character-type numeric data is read from a random access file with the GET#
command to the variable areas defined with the FIELD# command in the file
buffer.

ConVert to Single

(Function)
Action

Format

Example

Converts an 4-byte character string to a single-precision real number.

CVS (4-byte character string)

B! = CVS(B$)
Converts a character-type numeric data variable B$ created with the MKS$
function to a single-precision real number and assigns it to variable B!.

71

DATA Reference

Section 4

DATA

Description

The CVS function returns the value of an 4-byte character string converted to a
single-precision real number.

Because numeric data cannot be handled in a random access file, a a single-
precision real number must be converted to a character-type numeric data
variable (character string) with the MKS$ function before it is written to a random
access file. The CVS function converts character-type numeric data read from a
random access file back to a single-precision real number.

The CVS function has the opposite action to the MKS$ function. The MKS$
function converts numeric data to a character string.

Character-type numeric data is read from a random access file with the GET#
command to the variable areas defined with the FIELD# command in the file
buffer.

DATA

(Command)

72

Action

Format

Example

Description

Defines the integer constants and character constants read with the READ com-
mand.

DATA constant [, constant [, constant...]]

DATA 10, 20, 30, 40
Defines the integer constants 10, 20, 30, and 40 as decimal data.

DATA 5.5, "OvWL", 200
DATA 5.5, OvL, 200

Defines the real number 5.5, character string "OVL,” and integer 200 as data.
The DATA statement is not executable. It can be declared anywhere in the
program.

The constants (numeric and character) are delimited by commas (,).

A constant cannot be defined as a constant expression, such as 10*2.

When one of the character strings described below is declared as a constant, it
must be enclosed in double quotations (7).

¢ A character string containing a meaningful symbol such as a comma (,), colon
(:), or period (.)
e A character string starting or ending with a meaningful blank.

The constants defined with the DATA command are read sequentially to the
variables defined with the READ command.

Normally the DATA statement constants and the READ statement variables
have the same format. However, it is possible to specify character variables for
the READ statement which are read as the character-type numeric variables in
the corresponding DATA statement.

DATA statement READ statement Results of executing
constant format variable format READ statement
Numeric constant Numeric variable Read as a normal number

Numeric constant Character variable Number read as a

character string

Character constant Character variable Read as a normal
character string

Character constant Numeric variable Error

A RESTORE command before the READ command specifies the line containing
the DATA statement to read. If the DATA statement is not specified by a

DEF FN ... Reference

Section 4

RESTORE command, the position of the data read depends on the execution
status of the READ command.

Execution status of READ command Data to be read

First execution in program

Sequentially reads the data beginning with the first data statement in the
program.

Second and succeeding executions Continues reading the data sequentially after all remaining data from the first

execution has been read.

DATES

DATES$

(Command-Function)
Action

Format

Example

Description

DEF EN

Displays and sets the date in the internal clock.

Format 1 DATE$
Format 2 DATE$="yy/mm/dd”

PRI NT DATE$

Displays the date returned in DATES.
DATE$ = "92/11/ 10"

Sets the date to 10 November, 1992.

Reads the date from the F300.

The F300 has no internal clock. The clock is set to 00/00/00 on 80/01/01 when
the power supply is turned on. The time elapsed since the power was turned on
is counted. Therefore, it is not possible to read the correct date with the DATES$
function until the clock has been set.

A character string with the year, month, and day (yy/mm/dd) delimited by
slashes is returned when the DATES$ function is executed. The format is shown
below. The last two digits of the year are returned.

YY/MM/DD

Day - returns two characters between 01 to 31
Month - returns two characters between 01 to 12
Year - returns two characters between 80 and 99

DEFi ne Functi oN

(Command)
Action

Format

Example

Description

Defines a user function.

DEF FN name [(parameter [, parameter...])] = expression

DEF FNX% (X% = X% * X%

Defines a function to square the parameter.

The DEF function defines a function and its name.

Function names are subject to the same restrictions as variable names.

The parameters have the same names as the variables used inside the function.
These variable names are used only for evaluation of the expression inside the
function. The same variable names can be used elsewhere inside the program.

The expression declares the operation of the function. It must not exceed one
line.

73

DEFINT .. Reference

Section 4

DEF EN... END

The function is called in the format: FN name (variable). It is not necessary for
the variable name used to match the name used in the expression declaring the
operation of the function, however the variable format must be the same.

The function must be declared before it can be called.

DEF DEFi ne FuNcti on END DEFi ne

(Command)
Action

Format

Example

Description

DEFDBL

Defines a user function block.

DEF FNname [(parameter [, parameter...])]
statement in DEF FN block

END DEF
DEF FNX% (X%

FNX% = A% + X%
END DEF

Defines function X.
Defines a user function block.
The function names must conform to restrictions covering variable names.
The parameters have the same names as the variables used inside the function.
These variable names are used only for evaluation of the expression inside the
function. The same variable names can be used elsewhere inside the program.
It is possible to describe operation expressions as statements in more than one
line in a DEF FN statement block.
Use the format FN name (variable) to have access to a function. A DEF FN state-
ment must exist before the above format.
No further DEF FN ... END DEF declaration can be nested inside a DEF FN
statement block. The GOTO command must not be used to jump into or out of a
DEF FN statement block.
Use the EXIT DEF command to get out of a DEF FN statement block.

DEFi ne DouBLe

(Command)
Action

Format
Example

Description

DEFI NT

Declares variables as double-precision real number variables.

DEFDBL character range [,character range...]

DEFDBL E-H, Z

Declares all variables starting with the letters E, F, G, H, and Z as double-preci-
sion real numbers.

Declares variables starting with characters in the specified character range as
double-precision real number variables.

Only single characters can be specified in the character range. Specify multiple
characters using the minus (-) sign.

The type statements (%, &, !, #, $) take priority over type declarations with this
command.

DEFi ne | NTeqger

(Command)
Action

Format
Example

74

Declares variables as integers.

DEFI NT character range [,character range...]

DEFI NT A, F-I
Declares all variables starting with the letters A, F, G, H, and | as integers.

DEFSTR

.. Reference

Section 4

Description

DEFLNG

Declares variables starting with characters in the specified character range as
integer variables.

Only single characters can be specified in the character range. Specify multiple
characters using the minus (-) sign.

The type statements (%, &, !, #, $) take priority over type declarations with this
command.

DEFi ne LoNG

(Command)

Action

Format

Example

Description

DEFSNG

Declares variables as long integers.

DEFLNG character range [,character range...]

DEFLNG B, C-F

Declares all variables starting with the letters B, C, D, E, and F as long integers.
Declares variables starting with characters in the specified character range as
long integer variables.

Only single characters can be specified in the character range. Specify multiple
characters using the minus (-) sign.

The type statements (%, &, !, #, $) take priority over type declarations with this
command.

DEFi ne Si Nd e

(Command)

Action

Format

Example

Description

DEFSTR

Declares variables as single-precision real number variables.

DEFSNG character range [,character range...]

DEFSNG A, B-D

Declares all variables starting with the letters A, B, C, and D as single-precision
real numbers.

Declares variables starting with characters in the specified character range as
single-precision real number variables.

Only single characters can be specified in the character range. Specify multiple
characters using the minus (=) sign.

The type statements (%, &, !, #, $) take priority over type declarations with this
command.

DEFi ne STRi ng

(Command)

Action

Format

Example

Description

Declares variables as character variables.

DEFSTR character range [,character range...]

DEFSTR A, B-D

Declares all variables starting with the letters A, B, C, and D as character strings.
Declares variables starting with characters in the specified character range as
character string variables.

Only single characters can be specified in the character range. Specify multiple
characters using the minus (-) sign.

The type statements (%, &, !, #, $) take priority over type declarations with this
command.

75

DIM Reference

Section 4

DELETE

DELETE

(Command)

Action

Format

Example

Description

DEVI CE

Deletes all lines in a specified range of the program.

DELETE [line# 1] [-line# 2]

DELETE 100-190
Deletes all lines from 100 to 190.

Deletes all lines between line# 1 and line# 2.
Only line# 1 is deleted if line# 2 is not specified.
Lines from the start of the program to line# 2 are deleted if line# 1 is not specified.

Use a period (.) instead of line# 1 or line# 2 to specify the current program line.
The current line is indicated by the pointer. The current line is the last line input
during program creation or the last line displayed with the LIST command.

It is not possible to omit both the line# 1 and line# 2 parameters.

DEVI CE

(Command)

Action

Format

Example

Description

Dl M

Specifies the standard OVL input and output devices.

DEVI CE [’KYBD:" or "COM:"], ['SCRN:" or "COM:"]

Specifies program input and output through the RS-232C port.
The input device can be selected as the keyboard or RS-232C port. The output
device can be selected as the video monitor or the RS-232C port.
The first parameter specifies the input device, as one of the following.
KYBD: Keyboard
COM: RS-232C
Input from the keyboard is disabled if the input device is set to the RS-232C port.
The second parameter specifies the input device, as one of the following.
SCRN: Video monitor
COM: RS-232C

Subsequent characters are output to the RS-232C port if the output device is set
to RS-232C.

Previous settings remain unchanged if both parameters are omitted.

DI Mensi on

(Command)

Action

Format

76

Defines an array variable.

DI Mvariable name (qualifier max. value [, qualifier max. value ...]) [, variable
name (qualifier max. value [, qualifier max. value...])]

DISPLAY .. Reference

Section 4

Example

Description

DI N

DI M A$(50)
Defines a one-dimensional character array variable A$(50).

Defines a two-dimensional single-precision real number array variable
B$(10,3).

Declares the variable format, number of dimensions, and qualifier maximum
values of an array variable and assigns the array variable to an area of memory.

The array variable format is specified with the type statements (%, !, #, $, &). The
default type if the type statement is omitted is a single-precision real number
variable.

The number of qualifier maximum values indicates the number of dimensions of
the array. If multiple dimensions are specified, the qualifier maximum values are
delimited by commas (,).

The qualifier maximum value parameters specify the maximum value a qualifier
can have. The qualifier minimum value can be specified as 0 or 1 with the
OPTION BASE statement.

The default value is 0 if no OPTION BASE statement is specified. Note that
executing the command DIM A(20) if no OPTION BASE statement is specified in
the program results in an array with elements from 0 to 20, that is, 21 elements.

Data | N

(Function)

Action
Format

Example

Description

DI SPLAY

Reads the status of the Terminal Block Unit or Parallel I/O Unit input port.

DI N (bit address [, size])

A =DN(2 8)

Reads the status of the eight bits 2 to 9 from the Terminal Block Unit or Parallel
I/0 Unit and assigns the bits to variable A.

The DIN function reads the data input to the Terminal Block Unit or Parallel I/O
Unit input ports.

If both Terminal Block Units and Parallel 1/0O Units are connected, the DIN
function does not differentiate between the two. The maximum number of input
bits becomes the total number of the input bits for all Units.

Specify the number of input data bits with the size parameter. The default value
is 8. Specify the data input start position with the bit address parameter.

Data is input as integers with + or — signs.

DI SPLAY

(Command)

Action

Format

Example

Sets the display image.
DI SPLAY display image [, image pathway]

DI SPLAY 31

Displays all images.

77

DO-LOOP UNTIL Reference Section 4

DO-LOOP REPEAT

Description

The DISPLAY command specifies the image displayed on the video monitor as a
display number between 0 and 31.

The decimal number between 0 and 31 set for the display image represents a
binary number. The image corresponding to a bit set to 1 is displayed. The
relationship between the bits and displayed images is shown below. Normally
leave bit O set to 1.

Bit 0: Camera image

Bit 1: Paint/pattern matching window memory image
Bit 2: Window memory image

Bit 3: Graphic memory image

Bit 4: Character memory image

The image pathway parameter specifies the image bus taken by the displayed
image. The default value is 2.

0: Binary image and raw image .. Image bus 0
1: Binary image ... Image bus 1, raw image ... Image bus 0
2: Binary image ... Image bus 0, raw image ... Image bus 1
3: Binary image and raw image .. Image bus 1

DO-LOOP REPEAT

(Command)

DO-LOOP UNTI L

Action

Format

Example

Description

Repeats the statement between DO and LOOP the specified number of repeti-
tions.

DO

Statements in DO block
LOOP REPEAT number of times

DO
PRI NT |
LOOP REPEAT 20

Displays variable | 21 times.
The DO-LOOP REPEAT command executes the statement between DO and
LOOP the specified number of times.

The statements in the DO block are executed the number of times specified by
the (number of times parameter + 1).

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

DO-LOOP UNTI L

(Command)

78

Action

Format

Example

Repeats the statements between DO and LOOP until the condition is fulfilled.

DO
Statements in DO block

LOCP UNTI L conditional expression

PRI NT |

I =1 +1

LOOP UNTIL I > 29

Displays the integers from 20 to 29.

DO REPEAT-LOOP

Reference Section 4

Description

DO-LOOP VHI LE

The DO-LOOP UNTIL command executes the statement between DO and
LOOP until the condition is fulfilled.

The statements in the DO block are executed repeatedly while the conditional
expression is false.

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

DO-LOOP VHI LE

(Command)

Action

Format

Example

Description

Repeats the statements between DO and LOOP while the condition is fulfilled.

DO

Statements in DO block
LOOP V\HI LE logical expression

I =0

DO

PRI NT |

I =I+1

LOOP WHI LE 1<10

Displays the integers from 0 to 9.

The DO-LOOP WHILE command executes the statement between DO and
LOOP while the condition is fulfilled.

The statements in the DO block are executed repeatedly while the logical
expression is true.

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

DO REPEAT-LOOP DO REPEAT-LOOP

(Command)

Action

Format

Example

Description

Repeats the statements between DO and LOOP the specified number of times.
DO REPEAT number of times
Statements in DO block

LOOP

DO REPEAT 20
PRI NT |
LOOP

Displays variable | 20 times.

The DO REPEAT and LOOP command executes the statement between DO
and LOOP the specified number of times.

The statements in the DO block are executed the specified number of times.

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

79

DOUT

Reference

Section 4

DO UNTI L-LOCOP

DO UNTI L—-LOCP

(Command)

DO VHI LE-LOCP

Action

Format

Example

Description

Repeats the statements between DO and LOOP until the condition is fulfilled.
DO UNTI L logical expression

Statements in DO block

LOOP

| =25

DO UNTIL I <20
PRI NT |

I=l-1

LOCP

Displays the integers from 25 to 20.

The DO UNTIL-LOOP command executes the statement between DO and
LOOP until the condition is fulfilled.

The statements in the DO block are executed repeatedly while the logical
expression is false.

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

DO VH LE-LOCP

(Command)

DOUT

Action

Format

Example

Description

Repeats the statements between DO and LOOP while the condition is fulfilled.

DO VI LE logical expression
Statements in DO block

LOOP

| =0

DO VHI LE | <10
PRI NT |

I =I+1

LOOP

Displays the integers from 0 to 9.

The DO WHILE-LOOP command executes the statement between DO and
LOOP while the condition is fulfilled.

The statements in the DO block are executed repeatedly while the logical
expression is true.

The GOTO command must not be used to jump into or out of a DO block. Use the
EXIT DO command to get out of a DO block.

Dat a OUTput

(Command)

80

Action

Format

Example

Outputs data to a Terminal Block Unit or Parallel I/O Unit.

DOUT output data [, [bit address] [, size]]

DOUT 123, 16, 8

Outputs the data 123 as eight bits from bit 16 of the Terminal Block Unit or
Parallel 1/0 Unit.

EDIT Reference

Section 4

Description

DSA

The DOUT function outputs the data specified with the output data parameter to
the output port of the Terminal Block Unit or Parallel I/O Unit.

If both Terminal Block Units and Parallel /O Units are connected, the DOUT
function does not differentiate between the two. The maximum number of output
bits becomes the total number of the output bits for all units.

Specify the data output start position (0 — (max. no. of output bits —1)) with the bit
address parameter. The default value is 0.

Specify the number of data bits to define the output data with the size parameter.
The default value is 16.

Dat a Set Acknow edge

(Function)
Action

Format

Example

Description

DSKF

Reads the status of the DSA signal.

DSA
A=DSA

Assigns the status of the Terminal Block Unit or Parallel I/O Unit DSA signal to
variable A.

The DSA function reads the status of the Terminal Block Unit or Parallel /O Unit
DSA signal, and returns a value as follows:

1: DSA signal is ON.
0: DSA signal is OFF.

When multiple I/O units are used simultaneously, this function reads the DSA
signal status from the unit with the lowest slot address.

Di SK Functi on

(Function)
Action

Format

Example

Description

EDI T

Determines the free space remaining in the memory card.
DSKEF (drive)

J=DSKF(" C:. ")

Determines the free space remaining in the memory card.

Determines the number of free bytes remaining in the disk specified by the drive
parameter.

The memory card interface is Drive C.

EDI T

(Command)
Action

Format

Example

Description

Selects the mode to edit lines of the program.

EDI T line number or .

EDI T 100
Displays line#1000 and selects the Edit mode.

Displays the line with the specified line number and selects the Edit mode.

In the Edit mode, the lines are edited with the ROLL-UP, ROLL-DOWN, and
other Keys. Use a period (.) to specify the current program line.

The current line is indicated by the pointer. The current line is the last line input
during program creation or the last line displayed with the LIST command.

81

END Reference

Section 4

ELLI PSE

ELLI PSE

(Command)
Action

Format

Example

Description

END

Draws an ellipse in VRAM.

ELLI PSEX, Y, XR, YR, VRAM [, [page#], [drawing density or drawing mode]
[, lineart]]

ELLI PSE 128, 255, 90, 35, 2,, 128, 0

Draws a filled ellipse on Plane 7 of the window memory with center coordinates
(128,255), horizontal axis (9), and vertical axis (35).

The ELLIPSE command draws an ellipse around the center coordinates (X,Y)
with the specified horizontal axis (XR), and vertical axis (YR).

Specify the VRAM where the ellipse is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : O written to memory

10: 1 written to memory
The drawing mode settings operate as follows:

OR: The current contents of the image memory ORed with 255 are written to
memory.

NOT: 0 is written to memory
XOR: The current contents of the image memory are inverted.
The default value for the drawing mode is OR.
Specify with the lineart parameter if the ellipse is an outline only or filled.
0: Filled ellipse
1: Ellipse outline only
The default value is O (filled).

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

END

(Command)
Action

Format

Example

Description

82

Stops program execution.

END

| F A$="FI Nl SH'" THEN END
Stops program execution if A$ contains the character string “FINISH”.

Stops program execution.

All files opened during program execution are closed when the END command is
executed. Even if no END command is executed, all files are closed and pro-
gram execution stops when the last line of the program has been executed.

ERASE Reference

Section 4

ENHANCE

ENHANCE

(Command)
Action

Format

Example

Description

ECF

Creates LUT data for contrast modification from histogram array data.

ENHANCE array name, modification array name

ENHANCE A, E

Converts the histogram data in array A to contrast-modified histogram data and
stores it in array E.

The ENHANCE command creates the original contrast-modified histogram from
the histogram data obtained with the HISTGRAM command. This contrast-mo-
dified histogram is set into a LUT (look-up table) for binary conversion with the
SETLUT command. After the camera image is selected with the FILTERIN com-
mand and the image is input to the video memory with the VIDEOIN command,
the contrast of the image input from the camera is improved before the image is
input to the image memory.

Use the the array name parameter to specify the name of the array containing
the histogram obtained with the HISTGRAM command.

Specify the name of the array to store the converted data with the modification
array name parameter.

The array to store the modified data must contain at least 256 elements.

End O File

(Function)
Action

Format

Example

Description

ERASE

Determines if the file is at the end of the file.

ECF (iile#)

| F EOF(2) THEN CLOSE #2

Closes file #2 during I/O execution if the EOF (end of file) is detected in file #2.
The EOF function can be used for sequential access files and communication

ports. Sequential access files on the memory card must be opened in the INPUT
mode.

The EOF function returns —1 (true) if no readable data remains in the file or O
(false) if readable data remains in the file.

Specify the number of the file opened with the OPEN command with the file#
parameter.

ERASE

(Command)
Action

Format

Example

Description

Deletes an array defined with the DIM command.

ERASE array name [, array name..]

ERASE X, Y1$
Deletes arrays X and Y1$.
The DIM command deletes the array with the name specified by the array name

parameter. The amount of memory equivalent to the size of the file is then
available to store variables.

After an array is deleted, another array with the same name can be created. This
allows the size of an array to be changed.

A Duplicate Definition error occurs if an array with the same name as an existing
array is created without first deleting the original array with the ERASE com-
mand.

83

ERROR ...

Reference

Section 4

ERL

ERror Line

(Function)
Action Determines the line number where an error occurred.
Format ERL
Example L%ERL
Assigns the line number where the error occurred to the variable L%.
Description The ERL function returns the line number where an error occurred.
The ERL function is normally used inside an error processing routine in
combination with program flow control statements. It is used for flow control in
error recovery processing and for recovery after the error is reset.
ERR ERRor code
(Function)
Action Determines the error code after an error occurs.
Format ERR
Example C¥%ERR
Assigns the error code to the variable C%.
Description The ERR function returns the error code.

ERRMSG

The ERR function is normally used inside an error processing routine in
combination with program flow control statements. It is used for flow control in
error recovery processing and for recovery after the error is reset.

ERRor MeSsaCe

(Command)

Action

Format

Example

Description

ERROR

Defines the operation when an error occurs.

ERRMSGmessage] [, [buzzer] [, error signal control]]

ERRMVSG |, 1

The buzzer sounds and an error message is displayed when error occurs.
The ERRMSG command defines the message format, buzzer alarm, and error
signal control method when an error occurs.

Set the message parameter to 0 to specify a Japanese error message or to 1 to
specify an English error message.

Set the buzzer parameter to 0 to stop buzzer operation when an error occurs.
Set the buzzer parameter to 1 to sound the buzzer when an error message is
displayed.

If the error signal control parameter is set to 0, the error signal does not turn on
when an error occurs. Set the error signal control parameter to 1, to turn the error
signal on when an error occurs.

The previous setting remains unchanged if the buzzer or error signal control
parameter is omitted.

ERROR

(Command)

Action

Format

Example

Generates a pseudo-error.

ERROR (numeric expression)

ERROR 2
Generates error code 2: Syntax error.

EVENTIN . Reference

Section 4

Description

ERROUT

The ERROR command generates the error specified with the numeric expres-
sion. When an error is generated which corresponds to a predefined system
error code, program execution is interrupted and the appropriate error message
is displayed.

Specify the numeric expression as an integer between 0 and 255. This range of
integers includes the system error codes.

Refer to the Error Message Table on page 213 for details of the error codes.

ERRor QUT

(Command)
Action

Format

Example

Description

EVENTI N

Controls the error output.

ERROUT oor1

ERROUT 1
Turns ON the power supply unit ERROR signal.

The ERROUT command controls the ON/OFF status of the power supply unit
ERROR signal. Set to 0 to turn the ERROR signal OFF or set to 1 to turn the
signal ON.

EVENT I N

(Command)
Action

Format

Example

Description

Sets the image input mode for input to the image memory due to event synchro-
nization.

EVENTI N[input mode [, [page#] [, input path]]]
EVENTI N 2

The image is input to page 0 of the image memory when the STEP signal is input.

The EVENTIN command sets the mode to input the image to the input memory
in synchronization with the STEP sighal or MEASURE command.

Set the input method parameter to one of the following values to specify the
image input method.

0: No image input
1: Input image synchronized with MEASURE command execution.
2: Image input synchronized with the STEP signal.

The default value is 0.
Omit the page# or set to 0.

Inputting the image to the image memory in synchronization with the MEASURE
command allows comparatively high-speed measurements.

The image can be successfully input to the image memory with the strobe by
synchronizing the image input with the STEP signal in combination with the
FLASH command.

The input path parameter specifies the bus to input the image. The default value
is 0.

0: Image bus 1
1: Image bus 0

The EVENTIN command must be executed each time before executing the
MEASURE command or the STEP signal is input.

85

EXIT DEF/DO/FOR/SUB Reference Section 4

The read timing for each input mode is shown below.

Input Mode 1:
1 field
Measure
‘ Image input interval ‘
Input Mode 2:
1 field
(2/60 s) ‘ ‘ ‘
STEP signal

‘ Image input interval ‘

EXI T _DEF/ DO FOR/ SUB EXI T _DEF/ DO FOR/ SUB

(Command)
Action Exits a control block.

Format Format 1: EXI T DEF
Format2: EXI T DO
Format3: EXI T FOR
Format4: EXI T SUB

Example FOR I=0 TO A

I F 1 >MAX THEN
PRI NT " ERROR’
EXIT FOR

END | F

NEXT

Operation leaves the FOR—NEXT control loop if the value of variable | exceeds
the value of the variable MAX.

Description Format 1: Exits a user function.
Format 2: Exits a DO-LOOP loop.
Format 3: Exits a FOR-NEXT loop.

Format 4: Exits a structural subroutine.

86

FIELD # .. Reference

Section 4

EXP

EXPonent i al

(Function)
Action

Format

Example

Description

FI ELD #

Determines the value of the natural number e raised to an exponential power.

EXP (numeric expression)
Al =EXP(2)
Assigns the value of e raised to the power of 2 (e2) to the variable Al.

The EXP function returns the value of e (# 2.71828) raised to the specified
power.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number.

The LOG function has the opposite action to the EXP function. The EXP function
can be used to create other mathematical functions, such as the hyperbolic sine
function (sinhX).

FI ELD

(Command)

Action Allocates the variable areas to the file buffer of the random access file.

Format FI ELDfile#, field length, AS character variable [, field length, AS character
variable...]

Example FI ELD #1, 30 AS NAMES$, 4 AS AGES, 6 AS SEX$
Allocate 30 bytes for the NAMES$ variable, 4 bytes for the AGE$ variable, and 6
bytes for the SEX$ variable in the input buffer of the random access file opened
as #1.

NAME$ AGE$ SEX$
30 4 6 216 Units: bytes
256
Description To use a file buffer as the input buffer for a random access file, the areas to store

character data (variable areas) must be allocated in the file buffer.

Specify the file# as the number in which the file was opened with the OPEN
statement.

Specify the length allocated for the character variable with the field length
parameter as a positive integer between 1 and 255.

Multiple character variables can be allocated. However, the total of the field
lengths specified for all variables must not exceed 256 bytes. The total of the
field lengths specified with a FIELD# command must equal the length of one
record for random access file 1/0.

The FIELD# command is used only to define the character variable names and
variable areas in the file buffer. The LSET and RSET commands are used to to
set data in the allocated variable areas. The GET# and PUT# statements are
used for data random access file I/O. It is not possible to assign data to the
character variables defined with the FIELD# command with any commands
except LSET and RSET. Multiple FIELD# commands can be executed to
allocate different character variables to a single file buffer.

87

FILTER ... Reference Section 4
(Command)
Action Displays the memory card file directory, showing the file names, sizes, and cre-
ation dates.
Format FI LES (drive name)
Example FI LES
Displays the file directory for the memory card (drive C).
Description The FILES command displays the file directory for the specified drive name,

Fl LTDATA

showing the file names, sizes, and creation dates.

The default drive name is drive C.

The initial file creation date is 00/00/00 on 80/01/01 when the power supply is
turned on. Use the DATES function to apply the correct creation date to the file.

Fl LTer DATA

(Command)
Action

Format

Example

Description

FI LTER

Specifies the line filter factors.

FI LTDATAdata 0, data 1, ... , data 8 [, global factor]

FI LTDATA -8,1,1,1,1,1,1,1,1,4
Sets the line filter to a negative Laplacian result divided by 4.
The FILTERDATA command sets the line filter factors. It is used with the FILTER

command to set the image filtering. Line filter must be selected with the FILTER
function to enable the filter specified with the FILTDATA command.

The factors are specified with the parameters data 0 to data 8. The positional
relationship of these pixels is shown in the diagram below.

Data 1 | Data 2
Data 4 | Data O
Data 6 | Data 7

Data 3
Data 5
Data 8

The nine parameters from data O to data 8 can be set to the values 0, +1, +2, +4.
However, data 0 can also be set to +8.

A filter result of 256 or higher is rounded to 255 while negative values are
rounded to 0. In cases where it is desirable to restrict filtering results to 255, the
filtering results can be divided by the global constant.

The global constant parameter can be set to 0, 1, 2, 4, 8, or 16. The output
becomes 0 if the global constant is set to 0. The default value is 1.

FI LTER

(Command)
Action

Format

Example

88

Sets the image filtering function and LUT function.

FI LTER function [, [LUT function,] [, [bias] [, peripheral pixels]]]
FILTER 2, 1

Sets the sharpened image and LUT function.

.. Reference

Section 4

Description

FI LTERI N

The FILTER command sets the image filtering function for the camera image
and frame memory image.

Set the function parameter to a number corresponding to one of the following
filtering methods:

: raw image

: shading mask image

: sharpened image

: shading compensation image
: sobel image

- line filter image

. (not used)

7: compound edge image

Set LUT function to 1 to enable the LUT function. The default value is 0.

OO0 WNPEO

The peripheral pixels parameter defines the output density (as 0 or 255) of the
2-pixel unstable border which arises due to filtering. The previous setting
remains unchanged if the set values is not 0 or 255 or if the parameter is omitted.

The specified bias value is added to the image density after filtering. Specify a
value between —128 and 127.

FILTER I N

(Command)

FIL ND

Action

Format

Example

Description

Selects the input path of the image to be displayed and measured.

FI LTERI Npath [, page#]

FILTERIN 1
The image memory contents are output to image bus#1.
The FILTERIN command selects the camera image or an image from image

memory as the image to be displayed and measured. This image is subjected to
the selected filtering function.

Set the path parameter to O to select the camera image or 1 to select the image
from the image memory. The image selected by the path parameter is output to
image bus#1 and is also subjected to filtering before being output to image
bus#0.

Omit the page# or set to 0.

Fl ND

(Command)

Action

Format

Example

Searches for a specified character string and displays the line containing the
character string.

Format 1: FlI ND search character string [, line# 1] [[line# 2]] [, A]
Format 2: FI ND

FIND " WHI LE"
Displays the first line in the text program containing “WHILE”.

FIND "WH LE", 100-200, A
Displays the all lines between line 100 and line 200 in the text program
containing “WHILE".

FI ND
Continue the previous find operation.

89

FLASH

Reference

Section 4

Fl X

Description

The FIND command searches for the specified search character string between
line#1 and line#2 and displays the line containing the character string. If more
than one line contains the specified search character string, the first line found is
displayed.

Input the FIND command with no parameters to continue a previous find
operation.

If the A option is specified, each line containing the specified search character
string is displayed.

Fl X

(Function)

Action

Format

Example

Description

FLASH

Rounds down a value to an integer.

FI X (numeric expression)
A=FI X(-3. 3)

Rounds down the value of the numeric expression —3.3 to an integer (-3) and
assigns it to the integer variable A.

The FIX function rounds down the specified numeric expression and returns an
integer.

The INT and CINT functions are similar to the FIX function. Like the FIX function
,the INT function also rounds down the specified value, but the INT function
never returns a value larger than the value specified with the numeric expres-
sion. The CINT function rounds off the decimal places of the specified numeric
expression (i.e., up or down to the nearest integer) and returns an integer.
Examples of the actions of the FIX, INT, and CINT function are shown in the table
below.

Expression Specified function Returned value

Positive numeric expression FIX (1.7)
INT (1.7)
CINT (1.7)

N e

Negative numeric expression | FIX (-=1.7) -1
INT (=1.7) -2
CINT (-1.7) -2

FLASH

(Command)

90

Action

Format

Example

Description

Flashes the strobe and simultaneously reads the image to the Camera I/F Unit
internal memory.

FLASH mode [, period]

FLASH 2

The strobe flash and image input to the Camera I/F Unit internal memory are
synchronized to the STEP input.

The FLASH command flashes the strobe and inputs the image to the Camera I/F
Unit internal memory.

Set the mode parameter to one of the following values:

0: Stop

1: Operation on FLASH command only
2: Operation synchronized to STEP input
3: Operation each specified period

GATE Reference

Section 4

The period parameter setting is only valid when mode 3 (operation each
specified period) is selected. The period is specified as a number of fields
between 0 and 65535 fields. The default value is 2 fields (1 frame). Operation
stops if a period of 0 is specified.

FOR. . TO . STEP-NEXT FOR. . TO . STEP-NEXT

(Command)
Action

Format

Example

Description

FRE

Repeats the commands between the FOR and NEXT statements.

FOR numeric variable = initial value T Ofinal value [STEP increment]
to

NEXT [numeric variable [, numeric variable ..]]
100 FOR I =1 TO 10

200 NEXT |
Repeats the statements between line 100 and line 200 ten times.

The FOR-NEXT loop is formed by a series of statements starting with the FOR
statement and ending with the NEXT statement. The series of statements inside
the FOR-NEXT loop is executed the specified number of times. Normally, each
FOR statement has a corresponding NEXT statement.

The specified numeric variable counts the number of times the FOR—-NEXT loop
is executed. Consequently, the same numeric variable name must be specified
for both the FOR and NEXT statements.

The units to calculate the loop execution can be specified with STEP and an
increment parameter. Both STEP and the increment parameter can be omitted.
The default value of the increment is +1. Each time the FOR-NEXT loop is
executed, the increment is added to the current value of the numeric variable
(starting from the initial value the first time the loop is executed) then assigned to
the numeric variable again.

FREe nenory

(Function)
Action

Format

Example

Description

GATE

Determines the amount of free space in each control area.

FRE (function)

PRI NT FRE(2)

Prints the free memory size of each program area.

The FRE function determines the free memory area in bytes of the control area
specified with the function parameter.

Specify the function parameter as a value between 0 and 3, as follows:

0: Determines the free area in variable table region.

1: Determines the free area in character-string array region.
2: Determines the free area in program region.

3: Determines the total free area for functions 0 to 2.

GATE

(Command)
Action

Format

Example

Controls the GATE signal.

GATE oor1

GATE 1
Turns on all GATE signals for the Terminal Block Units and Parallel /0O Units.

91

GCOPY2

Reference

Section 4

Description

GCOPY

The GATE command controls the GATE signal ON/OFF status of the Terminal
Block Units and Parallel I/O Units.
Set to 0 to turn the signal OFF or to 1 to turn the signal ON.

When multiple units are connected, the GATE signals are controlled
simultaneously for all units.

G ay COPY

(Command)

Action

Format

Example

Description

GCOPY2

Copies the raw image in VRAM.

GCOPY VRAML, [page# 1], VRAM2, [page# 2] [, [X1] [, [Y2] [, [X2] [, [Y2] [, [X] [,
I

GCOPY 2,0,3,0

Copies the entire contents of the window memory to the image memory.

The GCOPY command copies the raw image in VRAM.

Specify the copy source and destination VRAMs (VRAM1 and VRAM?2). A plane
VRAM cannot be specified. Use the numbers as follows:

2: Window memory
3: Image memory
4: Shading memory

Omit page# 1 and page# 2 or set to 0.

To limit the rectangular region to be copied, specify the top-left coordinates of the
rectangle as X1, Y1 and the bottom-right coordinates as X2, Y2. The default
values for X1, Y1 are 0, 0 and the default values for X2, Y2 are 511, 511. Specify
the top-left coordinates of the copy destination rectangle as X, Y. The default
values for X, Y are 0, O.

The contents of planes write protected with the MASKBIT command remain
unchanged.

G ay COPY

(Command)

92

Action

Format

Example

Description

Makes enlarged and reduced copies of raw images in VRAM.

GCOPY2 VRAM1, [page# 1], VRAM2, [page# 2] [, [XS1] [, [YS1] [, [XS2] [,
[YS2] [, [XD1] [, [YD1] [, [XD2] [, [YD2]III
GCOPY2 3, , 4, , 200, 200, 300, 300

Makes an enlarged copy of the image contained in the image memory rectangle
with coordinates (200, 200), (300, 300) to the entire shading memory.

The GCOPY2 command makes enlarged or reduced copies of the raw image in
VRAM.

Specify the copy source and destination VRAMs (VRAM1 and VRAM?2). A plane
VRAM cannot be specified. Use the numbers as follows:

2: Window memory
3: Image memory
4: Shading memory

Omit page# 1 and page# 2 or set to 0.

Specify the top-left coordinates of the copy source rectangular region as XS1,
YS1 and the bottom-right coordinates as XS2, YS2. The default values for XS1,
YS1 are 0, 0 and the default values for XS2, YS2 are 511, 511.

GET@

Reference

Section 4

GET #

Specify the top-left coordinates of the copy destination rectangular region as
XD1, YD1 and the bottom-right coordinates as XD2, YD2. The default values for
XD1, YD1 are 0, 0 and the default values for XD2, YD2 are 511, 511.

The contents of planes write protected with the MASKBIT command remain
unchanged.

CET #

(Command)

GET@

Action

Format

Example

Description

Reads data from a random file to the file buffer.

GETH# file#t [, numeric expression]

GET #1,8

Reads the #8 record from the random access file opened as file #1 to the file
buffer.

The GET# command reads data from the random access file specified with the
file# to the file buffer.

Specify the file# as the number in which the random access file was opened with
the OPEN statement. After using a random access file, it must be closed with the
CLOSE statement.

Specify the number of the record to be read with the numeric expression. If
omitted, the record after the record# used with the previous GET# or PUT# com-
mand is read.

The data in the file buffer is assigned to the character variables allocated to
variable areas with the FIELD# command. The character variables are then
transferred to the program.

GT@

(Command)

Action

Format

Example

Description

Reads image data from a VRAM to an array variable.

GET@X1, Y1, X2, Y2, array name, VRAM [, [page#] [, plane#]]

GET@ 20, 20, 200, 200, DATA1% 3, , 2

Reads image data from the rectangular region of image memory, plane# 2,
bounded by the corner coordinates (20, 20), (200, 200) to the array variable
DATA1%.

The GET@ command reads image data from the rectangular region defined by
the corner coordinates (X1, Y1), (X2, Y2) to the array variable with the name
indicated by the array name.
Specify the VRAM where the data is stored with a number, as follows:

0: Character memory

1: Graphic memory

2: Window memory

3: Image memory

4: Shading memory

Omit the page# or set to O.

A frame type memory is specified as the VRAM along with a plane# to store the
data in the plane as binary data. The data is stored as raw image data if the
plane# is omitted.

If a plane memory is specified, the number of binary image pixels equals the
number of bits in a single data array and the number of bytes in the array to store
the data is given by the following equation:

((horiz. pixels + 7) ¥ 8) * vert. pixels + 4

93

GETDLUT . Reference Section 4

If the array is D%, for example, the qualifier is calculated as follows:
Number bytes required ¥ 2 + 1

This applies when the qualifier minimum value is set to 0 with the OPTION BASE
command.

If a frame memory is specified, the number of raw image pixels equals the
number of bytes in a single data array and the number of bytes in the array to
store the data is given by the following equation:

horiz. pixels * vert. pixels + 4
If the array is D%, for example, the number of dimensions is calculated as
follows:

Number bytes required ¥ 2 + 1
This applies when the qualifier minimum value is set to 0 with the OPTION BASE
command.

The final 4 bytes in the equation above represents the 4 bytes at the start of array
where the array width and height are stored, as follows:

D% (0) = horizontal pixels (2 bytes)

D% (1) = vertical pixels (2 bytes)

D% (2) = 1st pixels

D% (3) = 2nd pixels

GETBLUT GET Bi nary LUT

(Command)
Action Reads the contents of the present binary-coded LUT value as an array variable.
Format GETBLUT binary image plane#, array name [, [qualifier] [, size]]
Example GETBLUT 4, A
Reads the binary LUT contents of binary image plane# 4 to array variable A.
Description The GETBLUT command reads the contents of the binary LUT specified with the

binary image plane# to the array specified with the array name.

The qualifier specifies the first element in the data array to store the data. The
default value is 0.

The difference between the set qualifier value and the maximum qualifier value
for the array must exceed the number of bytes set with the size parameter. When
the binary LUT data is written to the array variable, either 256 or 512 elements
are written from the start element specified by the qualifier. Other parts of the
array remain unchanged.

GETDLUT GET Display LUT

(Command)
Action Reads the current display LUT data to an array variable.
Format GETDLUT region, array name [, [qualifier]
Example CGETDLUT 1, A
Reads the display LUT data from inside the window to array variable A.
Description The GETDLUT command reads the current display LUT data to the array

specified with the array name.

Individual display LUTs are available for inside and outside the window. Specify
which LUT is required with the region parameter. Set region to O to read the LUT
data from outside the window or 1 to read the data from inside the window.

The qualifier specifies the first element in the data array to store the LUT data.
The default value is 0.

94

GOSUB

Reference

Section 4

GETDLVL

GET Di spl ay LeVelL

(Command)

Action

Format

Example

Description

GETLUT

Determines the display level of the image.
GETDLVL (image type)
GETDLVL(3)
Determines the displayed brightness of white in the binary image.
The GETDLVL function determines the displayed brightness of the image
specified by the image type parameter, as follows:
0: Character memory
: Graphic memory
: Mask image
: Binary image, white
: Binary image, black
: Window memory increments
: Paint/pattern matching window memory increments

O O WN PP

GET LUT

(Command)

GOSUB

Action

Format

Example

Description

Reads the current filtering LUT data to an array variable.

GETLUT array name [, [qualifier] [, size]]

GETLUT A
Reads the filtering LUT data to array variable A.

The GETLUT command reads the current filtering LUT data to the array
specified with the array name.

The qualifier specifies the first element in the data array to store the LUT data.
The default value is 0.

The size parameter specifies the number of data bytes to be stored. Set the size
to 0 to store 256 bytes or to any other value to store 512 bytes. The default value
is 0.

The difference between the set qualifier value and the maximum qualifier value
for the array must exceed the number of bytes set with the size parameter. When
the filtering LUT data is written to the array variable, either 256 or 512 elements
are written from the start element specified by the qualifier. Other parts of the
array remain unchanged.

GOSUB

(Command)

Action

Format

Example

Description

Branches to a specified subroutine.

GOSUB line# or label

GOSUB *START
Branches to the subroutine starting from the line labelled *START.
The GOSUB command branches control to the subroutine starting with the

specified line number or label. Control returns to the GOSUB statement position
when the RETURN statement at the end of the subroutine is executed.

Specify the first line of the subroutine with the line# or label name as the GOSUB
command parameter.

95

HELP ON/OFF/STOP ...

Reference Section 4

G&O10

When subroutines are nested, GOSUB and RETURN statements must always
be used in pairs.

& 10

(Command)
Action
Format

Example

Description

HELP

Unconditionally jumps to a specified line.

FORMAT1: GO TO line# or label
FORMAT2: GGOTO line# or label
GOTO *START

Program operation jumps to the line labelled *START.

The GOTO command unconditionally jumps control to the line with the specified
line number or label.

The action of the GOTO and GO TO statements is identical.

HELP

(Command)
Action

Format

Example

Description

HELP ON OFF/ STOP

Displays help messages.

HELP ['‘command or function name’]

HELP " A*”
Displays help messages for the commands and functions beginning with “A”.

The HELP command displays help messages for the commands and functions
specified with the command name parameter.
The wildcard characters (?, *) can be used in the command name.

A list of command and function names is displayed if the command name
parameter is omitted. No message is displayed if an unregistered command or
function name is specified with the command name.

HELP key ON OFF/ STOP

(Command)
Action

Format

Example

96

Disables, enables, or stops interrupts from the HELP Key.

HELP ON or OFF or STOP

HELP ON

Operation branches to an interrupt processing routine when the HELP Key is
pressed.

HISTGRAM Reference Section 4

Description

HELP ON:

HELP OFF:

HELP STOP:

HEX$

The HELP command controls branching to an interrupt processing routine when
the HELP Key is pressed.

The HELP ON statement enables the interrupt processing routine when the
HELP Key is pressed. When the HELP Key is pressed, operation branches to
the interrupt processing routine at the line# or label defined with the ON HELP
GOSUB statement.

The HELP OFF statement disables the interrupt processing routine when the
HELP Key is pressed. When the HELP Key is pressed, operation does not
branch to an interrupt processing routine.

The HELP STOP statement stops interrupt processing when the HELP Key is
pressed. When the HELP Key is pressed, operation does not immediately
branch to the interrupt processing routine. However, immediately branching is
enabled by the HELP ON statement, operation branches to the interrupt
processing routine at the line# or label defined with the ON HELP GOSUB
statement.

HEX$

(Function)
Action

Format

Example

Description

H STGRAM

Converts a numeric expression to a hexadecimal character string.

HEX$ (numeric expression)

A$=" &H’ +HEX$(100)

Converts the decimal value 100 to a hexadecimal character string,
concatenates this character string with the character string “ &H", and assigns
the result to the character variable A$. This equation is identical to A$ =" &H64".

The HEX$ function converts a decimal value to a hexadecimal character string.
It does not add the “ &H” prefix to indicate a hexadecimal character string.

Specify the numeric expression as a decimal numeric constant or numeric
variable between —2147483648 (—231) and 2147483647 (231-1). Any decimal
places in the specified numeric expression are rounded off to create an integer
which is converted to the hexadecimal character string.

The relationship between the decimal numeric expression and hexadecimal
character string is as follows:

Numeric expression (decimal) Hexadecimal character string
—2147483648 to —1 “80000000" to “FFFFFFFF”
0to 2147483647 “0" to “7TFFFFFFF”

To convert a hexadecimal character string back to numeric data, append the “
&H?” prefix to indicate a hexadecimal character string, then convert the character
string with the VAL function.

H SToGRAM

(Command)
Action

Format

Example

Description

Reads the density histogram from the image memory.

HI STGRAM [page#], X1, Y1, X2, Y2, array name [, qualifier]

H STGRAM , 0O, O, 100, 100, H

Stores the density histogram contained in the image memory rectangle with
corner coordinates (0, 0), (100, 100) to array name H.

The HISTGRAM command reads the density histogram from the image in the
image memory.

Omit the page# or set to 0.

97

IF.THEN-ELSE ..

Reference Section 4

| F. . GOTO-ELSE

The density histogram is read from the rectangular region with the specified
corner coordinates X1, Y1 and X2, Y2.

Specify the name of the array to store the density histogram with the array name
parameter.

The qualifier specifies the first element in the data array to store the density his-
togram. The default value is 0.

The array must have at least 256 elements between the specified qualifier value
and the maximum qualifier value.

| F. . GOTO-ELSE

(Command)

| F. . THEN-ELSE

Action

Format

Example

Description

Controls the program flow with a specified condition.

| F conditional expression GOT Oline # or label EL SE statement or line # or
label

| F A=1 GOTO 100 ELSE 200

Branches to line 100 if variable A equals 1 and branches to line 200 if variable A
is not equal to 1.

The IF ... GOTO-ELSE command control the program flow with the specified
conditional expression.

If the conditional expression is true (not 0), program operation jumps to the line#
or label specified after GOTO. The statement, line# or label specified after ELSE
is ignored.

If the conditional expression is false (0), program operation jumps to the line# or
label specified after ELSE or executes the statement specified after ELSE. The
line# or label specified after GOTO is ignored.

The ELSE statement can be omitted.

| F. . THEN-ELSE

(Command)

98

Action

Format

Example

Description

Controls the program flow with a specified condition.

| F conditional expression THEN statement or line # or label EL SE state-
ment or line # or label

| F A$="y” THEN GOSUB *START ELSE B=B+1

Branches to the subroutine labelled * START if variable A$ equals “ y”, otherwise
increments variable B by 1.

The IF ... THEN-ELSE command control the program flow with the specified
conditional expression.

If the conditional expression is true (not 0), program operation jumps to the line#
or label specified after THEN or executes the statement specified after THEN.
The statement, line# or label specified after ELSE is ignored.

If the conditional expression is false (0), program operation jumps to the line# or
label specified after ELSE or executes the statement specified after ELSE. The
statement, line# or label specified after THEN is ignored.

The ELSE statement can be omitted.

IMGLOAD . Reference

Section 4

| F. . THEN-ELSEI F—ELSE-END | F

(Command)

Action

Format

Example

Description

| MELOAD

Evaluates specified conditions.

| F conditional expression THEN
Statement in THEN block

ELSEI| F conditional expression THEN
Statement in ELSE IF block

[ELSE
Statement in ELSE block]

END | F

| F ERR=0 THEN

PRI NT " NORVAL”
ELSEI F ERR=2 THEN

PRI NT ” SYNTAX ERROR’
ELSEl F ERR=13 THEN

PRI NT " TYPE M SNATCH’
ELSE

PRI NT " OTHER ERROR’
END | F

Defines different actions when the variable ERR equals 0, 2, 13, or some other
value.

The IF ... THEN-ELSEIF-ELSE-END IF commands evaluate specified condi-
tional expressions.

Executes the subsequent Statement in THEN block if the specified conditional
expression is true (not 0). Jumps to the next ELSE IF, ELSE, or END statement if
the conditional expression is false (0).

Multiple ELSE IF statements may be used or they may be omitted.
The ELSE statement may be omitted.
The END IF statement is required. It cannot be omitted.

The GOTO command must not be used to jump into or out of a IF ... THEN-EL-
SEIF-ELSE-END IF statement block.

| MaGe LOAD

(Command)

Action
Format

Example

Description

Loads image data to VRAM.
I MGLQAD file name, X, Y, VRAM, [, [page#] [, plane#]]

| MALOAD "I MGL”, 0,0, 2,,5

Writes the file IMG1 from the memory card to the rectangular region with top-left
coordinates (0, 0) in window memory plane 5.

The IMGLOAD command loads image data saved with the IMGSAVE command
to VRAM.

Specify the image data with the file name parameter.

The data is saved to rectangular region. Specify the top-left coordinates of this
rectangular region with the X, Y parameters.

99

INKEYS .

.. Reference

Section 4

| MGSAVE

Specify the VRAM where the data is loaded with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the page# or set to 0.

Specify the plane# when loading binary image data to a frame VRAM. An error
occurs if an attempt is made to write raw image data to a plane VRAM. If image
data is written to a frame VRAM, it cannot be loaded to planes write protected
with the MASKBIT command.

| MaGe SAVE

(Command)

Action

Format

Example

Description

| NKEYS

Saves image data from VRAM.

| MGSAVE file name X1, Y1, X2, Y2, VRAM, [, [page#] [, plane#]] [, compres-
sion function]]]

| MGSAVE "1 M&L”, 10, 10, 100, 100, 2, , 3

Saves the rectangular region with corner coordinates (10, 10), (100, 100) from
the window memory plane 3 to the file IMG1 in the memory card with no
compression.

The IMGSAVE command saves image data from VRAM.

The contents of the image memory are saved to a file in the memory card with
the specified file name. Only the image inside the rectangular region with corner
coordinates (X1, Y1), (X2, Y2) is saved.

Specify the VRAM from which the data is saved with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the page# or set to 0.

Specify the plane# when saving binary image data or window data from a single
plane of a frame VRAM. The data is treated as raw image data if the plane# is
omitted.

Specify the compression function, as follows:

0: When saving binary image data (No compression)
1: When saving binary data (Compression using run-length method)
2: When saving shading data and raw image data (High compression)

The default value is 0. When the value 2 is specified, the rectangular region must
be set to (0,0), (511,511).

| Nput KEY$

(Function)

100

Action

Format

Example

Determines the character input from the keyboard.

| NKEY$

A$=I NKEY$
Assigns the key character of the key pressed on the keyboard to variable A$.

INPUT# .

.. Reference

Section 4

Description

| NPUT

Note

The INKEY$ function returns the key character of the key pressed when the
function is executed. The function returns a null string (" ") if no key is pressed
(that is, the keyboard buffer is empty). Refer to the Note below.

Data input with the INKEY$ function is not displayed on the screen. Unlike other
input commands, operation does not wait for a key to be pressed after the
function is executed.

Information on the pressed keys is stored in the keyboard buffer even if no
key input statement is executed. If data remains in the keyboard buffer when
the INKEY$ function is executed, the function returns the first key character
from the keyboard buffer, regardless of the key pressed at that time.

| NPUT

(Command)

Action

Format

Example

Description

| NPUT#

Assigns data input from the keyboard to a variable.

| NPUT [prompt character string{ , or ;}] variable [, variable...]
| NPUT " NAME” ; B$

Displays “NAME" on the screen and waits for keyboard input of the character
data to be assigned to the character variable B$.

Operation waits for data input from the keyboard when the INPUT command is
executed. Enter data delimited by commas (,) for the specified number of
variables and press the Return Key to assign the data to the variables.

Specify a character string for the prompt character string. This character string is
displayed to prompt for input of the required data.

The prompt character string must be separated from the subsequent variable by
a comma (,) or semicolon (;). The specified prompt character string only is
displayed if a comma is used. The specified prompt character string followed by
a question mark (?) and a single space is displayed if a semicolon is used. If no
specified prompt character string is specified, a question mark (?) and a single
space are displayed.

Multiple variables can be specified delimited by commas (,). The variables can
be either numeric or character variables.

If the Return Key is pressed without entering values, zero (0) is assigned to
numeric variables and a null string (" ") is assigned to character variables.

| NPUT#

(Command)

Action

Format

Example

Description

Reads data from a sequential access file and assigns it to variables.

| NPUT # file#, variable [, variable...]

| NPUT #1, A$, B, C

Reads three data items (character, numeric, numeric) sequentially from file #1
and assigns the data to variable A$ (character variable), B (numeric variable),
and C (numeric variable).

Specify the file# as the number in which the random access file was opened with
the OPEN statement.

The variables can be specified either as numeric or character variables. The
specified variable format must match the corresponding data format.

The data is read from the file as numeric or character variables, complying with
the rules governing these data types. Unlike the INPUT command, the INPUT#
command displays no prompt message or question mark (?).

101

INPUT WAIT

Reference Section 4

Numeric Variables: Leading spaces are ignored and the data is read in from the first non-blank char-

acter. The data up to the next blank, comma (,), or linefeed character (&HA) is
assigned to the numeric variable.

Character Variables:Leading spaces are ignored and the data is read in from the first non-blank char-

| NPUTS

acter. The data up to the next blank, comma (,), or linefeed character (&HA) is
assigned to the character variable.

If the first character is a double-quotation mark (”), subsequent data is
considered to be contained in double-quotation marks () and all characters and
blanks up to the next double-quotation mark (") are assigned to the character
variable. Therefore, a comma (,) or linefeed character (&HA) must be enclosed
in double-quotation marks () to be assigned to a variable.

| NPUTS

(Function)

Action

Format

Example

Description

| NPUT WAI T

Reads a specified length of data from a sequential access file, the RS-232C port,
or the keyboard.

| NPUTS$ (character string length [, file#])
A$=l NPUTS$(5, #3)
Reads 5 characters from file #3 and assigns them to variable A$.

Specify the file# to read the data from with the file# parameter.

Data is read from the keyboard if the file# parameter is omitted. Unlike data input
with the INPUT or LINE INPUT command, data input from the keyboard using
the INPUTS$ function is not displayed on the screen.

Specify the character string length as a positive integer value. The program
operation waits for input of the specified number of characters.

If the length of the data input from the RS-232C port exceeds the number of
characters specified with the character string length, the remaining data is read
to the next INPUTS$ function.

| NPUT WAI T

(Command)

102

Action

Format

Example

Description

Inputs data from the keyboard with a time limitation.

| NPUT VWAI T wait time, [prompt character string{ , or :}] variable [, vari-
able..]

| NPUT WAI T 150, " ANSVEER’ ; AN$

Displays the input prompt message “ANSWER” on the screen and waits 15
seconds for keyboard input of the character data to be assigned to the character
variable A$.

Operation waits for the specified wait time for data input from the keyboard when
the INPUT WAIT command is executed. Enter data delimited by commas (,) for
the specified number of variables and press the Return Key within the specified
wait time to assign the data to the variables.

The INPUT WAIT command is identical to the INPUT command, except for the
time limit. If the Return Key is pressed without entering values for the variables,
zero (0) is assigned to numeric variables and a null string (") is assigned to
character variables. If the time specified by wait time passes, the variables will
not change.

Specify the wait time in units of 0.1 second.

INT . Reference

Section 4

| NSTR

| N STRi ng

(Function)

| NT

Action

Format

Example

Description

Determines the position of the specified characters in the character string

| NSTR ([start position,] character string 1, character string 2)

X=I NSTR(, A$, " XYZ")

Determines the position of character string XYZ from the start of the character
string A$ and assigns the position as a number of bytes to variable X.

The INSTR function finds a specified character string 2 in a character string 1 of
one-byte characters and returns the position of character string 2 in bytes from
the start of character string 1.

The function returns the value 0 if the specified character string 2 does not exist
in character string 1. The INSTR function still returns the number of 1-byte
characters if it is used to find a character string in a string of 2-byte characters. In
this case, use the KINSTR function instead.

Specify a value with the start position parameter to set the the position to start
searching character string 1. Specify the value between 1 and the number of
characters in character string 1. If omitted, searching starts from the beginning
of the character string. The function returns the value 0 if the specified start posi-
tion is larger than the number of characters in character string 1.

Specify a character constant or a character variable for character string 1, the
character string to search. The function returns the value 0 if the specified char-
acter string 1 is a null string (").

Specify a character constant or a character variable for character string 2, the
character string to be searched for. The function returns the specified start posi-
tion value if character string 2 is specified as a null string (").

| NTeqger

(Function)

Action

Format

Example

Description

Rounds down a value to an integer.

| NT (numeric expression)

A=I NT(3. 3)

Rounds down the value of the numeric expression 3.3 to an integer 3 and
assigns it to the integer variable A.

The INT function rounds down the specified numeric expression and returns an
integer not exceeding the value specified with the numeric expression.

The FIX and CINT functions are similar to the INT function. However, the FIX
function simply cuts off (rounds down) the decimal places from the specified val-
ue. The CINT function rounds off the decimal places of the specified numeric
expression (i.e., up or down to the nearest integer) and returns an integer.
Examples of the actions of the FIX, INT, and CINT function are shown in the table
below.

Expression Specified function Returned value

Positive numeric expression FIX (1.7)
INT (1.7)
CINT (1.7)

N

Negative numeric expression | FIX (-1.7) -1
INT (-1.7) -2
CINT (-1.7) -2

103

IPL . Reference

Section 4

| NTR O\ OFF/ STOP

| NTeRr upt ON OFF/ STOP

(Command)

| PL

Action

Format

Example

Description

Disables, enables, or stops interrupts with the STEP signal.

| NTR ON or OFF or STOP

I NTR ON
Enables STEP interrupts.

The INTR command control execution of the interrupt subroutine defined with
the ON INTR GOSUB command when a STEP input is generated from a
Terminal Block Unit or Parallel /0O Unit. The rising edge of the STEP input signal
is detected.

The INTR ON statement enables the STEP interrupt processing. When the
STEP signal is input, the interrupt routine is executed immediately.

The INTR OFF statement disables the STEP interrupt processing. The STEP
input is ignored.

The INTR STOP statement stops STEP interrupt processing. An input STEP
signal is stored in memory, and when STEP interrupt processing is enabled
again with the INTR ON command, operation immediately branches to the
STEP interrupt processing routine. Operation jumps to the STEP interrupt
processing routine only once, regardless of the number of times the STEP signal
was input.

|nitial Program Loadi ng

(Command)

104

Action

Format

Example

Description

Sets the OVL boot-up mode.

| PL [[00or 1 or file name], [numeric value 1], [numeric value 2], [numeric value
3], [numeric value 4], [numeric value 5]]

IPL 1
Automatic boot-up of the program in the text region when the power is turned on.

IPL "C FILE
Loads and executes “C:FILE” when the power is turned on.

| PL
Displays the current OVL boot-up mode.

Set the IPL command initial parameter to 1 to automatically load and boot-up the
program in the text region. Set the parameter to O to disable automatic boot-up.
Set a file name as the parameter to load and execute a saved file.

The numeric value 1 parameter specifies the number of files which can be open
simultaneously. Set a value between 1 and 11.

The numeric value 2 parameter specifies the size of the array variable or
character variable region in Kbytes. Set a value between 1 and 62 Kbyte.

The numeric value 3 parameter specifies the size of the user stack region in
Kbytes. Set a value between 1 and 2 Kbyte.

The numeric value 4 parameter specifies the size of the compile region in
Kbytes. Set a value between 2 and 8 Kbyte.

The numeric value 5 parameter specifies the number of lines displayed on the
screen. Set the value to 20 or 25.

If all parameters are omitted, the current OVL boot-up mode status is displayed.

KEXTS$ Reference Section 4
(Function)

Action Determines Shift JIS code for a 2-byte character.

Format J| S$ (character string)

Example J$=J1S$ (" ABC")

Assigns the Shift JIS code (8260) corresponding to the first character of the
character string "ABC”.

Description The JIS$ function returns the hexadecimal character for the first 2-byte
character in the specified character string.

If the specified character string contains 1-byte characters, the code is returned

for the first and second bytes of the string. An error occurs if a null string (") or a

string containing one byte is specified.

The KNJ$ function has the opposite function to the JIS$ function. The KNJ$

function returns the 2-byte character corresponding to the specified 4-digit

hexadecimal Shift JIS code. The F300 uses the Shift JIS codes.
KACNV$ Kanji Ank CoNVert$
(Function)

Action Converts 2-byte characters in a character string to 1-byte characters.

Format KACNV$ (character string)

Example CH=KACNVS(" OVRON 100")

Converts the 2-byte characters “OMRON?" in the character string " OVRON 300"
to the 1-byte characters ” 0MRON F300” and assigns the entire character string to
variable C$.

Description The KACNV$ function converts an alphabetic, numeric, or kana 2-byte
character to a 1-byte character of identical meaning. The KACNV$ function
returns a character string containing only 1-byte characters.

Specify the character string with a character constant or character variable as a
character string containing alphabetic, numeric, and kana characters defined
with both 1-byte and 2-byte character codes.
An error occurs if the character string contains a Kanji character or a 2-byte
character for which no 1-byte character is defined.
The AKCNV$ function has the opposite action to the KACNV$ function. The
AKCNV$ function converts 1-byte alphabetic, numeric, and kana characters in a
character string to equivalent 2-byte characters.
KEXT$ Kanji EXTract $
(Function)

Action Extracts either 1-byte or 2-byte characters from the character string.

Format KEXT$ (character string, function)

Example K$=KEXT$ (" OVRON VISION”)

Assigns only the 1-byte characters to variable K$. In this case, K$ contains the
string " VISION” .
Description The KEXT$ function extracts either the 1-byte or 2-byte characters from a

character string containing by character types.

Specify the character string from which the characters are selected as a
character constant or a character variable.

105

KEY ON/OFF/STOP

Reference Section 4

KEY

Specify the function parameter as either 0 or 1. The meanings of these settings
are described in the table.

Function Description
0 Extract the 1-byte characters
1 Extract the 2-byte characters

The KEXT$ function returns a null string (" ”) if the type of character specified
with the function parameter does not exist in the character string.

KEY

(Command)
Action

Format

Example

Description

KEY LIST

Assigns any character string to the function keys.

KEY [key#, character expression]

KEY 1, " TOTAL"

Sets the character string “TOTAL” to function key 1 and displays this character
string on in the input guide.

The KEY command sets the display for the function key (F1 to F10) with the
specified key# using a character string or control code.

Specify the key# parameter as a value between 1 and 10. This number
corresponds to one of the functions keys (F1 to F10).

Specify the character expression with up to 15 1-byte characters and control
codes (CHR$ (1) to CHR$(31) and CHR$(127)).

The control codes cannot be input from the keyboard. Specify the codes using
the CHRS$ function with character codes linked by “+” signs. Each control code
occupies one byte. The input guide displays the first five standard-sized charac-
ters.

If the key# and character expression parameters are omitted, the settings revert
to the settings when the OVL was booted up.

KEY LIST

(Command)
Action

Format

Example

Description

KEY ON OFF/ STOP

Displays the function key settings on the screen.

KEY LI ST

KEY LI ST
Displays the settings of all the function keys on the screen.

The KEY LIST command displays the present settings of the ten function keys.

KEY ON OFF/ STOP

(Command)
Action

Format

Example

Description

106

Disables, enables, or stops interrupts from the function keys.

KEY [(key#)] ONor OFF or STOP

KEY(10) ON

Operation branches to an interrupt processing routine when the function key#
10 (F10) is pressed.

The KEY command controls branching to an interrupt processing routine when a
function key is pressed.

Specify the key# parameter as a value between 1 and 10 corresponding to a
function key number. The KEY ON/OFF/STOP command applies to all keys if
the key# is not specified.

KILL Reference

Section 4

KEY ON:

KEY OFF:

KEY STOP:

The KEY ON statement enables the interrupt processing routine when the
function key is pressed. When the function key is pressed, operation branches to
the interrupt processing routine at the line# or label defined with the ON KEY
GOSUB statement.

The KEY OFF statement disables the interrupt processing routine when the
function key is pressed. When the function key is pressed, operation does not
branch to an interrupt processing routine.

The KEY STOP statement stops interrupt processing when the function key is
pressed. When the function key is pressed, operation does not immediately
branch to the interrupt processing routine but the pressed status is stored in
memory. Immediately branching is enabled by the KEY ON statement, operation
branches to the interrupt processing routine at the line# or label defined with the
ON KEY GOSUB statement.

Note The interrupt subroutine must be defined with the ON KEY GOSUB
statement before a KEY ON/OFF/STOP command is executed.
(Function)
Action Reads the input status of the console keys.
Format KEYI N (input mode)
Example A=KEYI N(1)
Waits for a key input from the console and assigns the input status to variable A.
Description Returns the input status of the console keys.
If the input mode parameter is set to 0, the function returns 0 is no key is pressed
at the time the function is executed. If the input mode parameter is set to 1,
operation waits until a key is pressed.
The function returns a value between O and 255. Each bit of the binary
representation of the returned value corresponds to a pressed key, as follows:
Bit O: | Bit 4: ENT
Bit1:Q Bit5:ESC
Bit 2: A Bit 6: HELP
Bit 3: i Bit 7: SHIFT (see note)
Note The status of the SHIFT Key is returned only when it is pressed

KILLL

simultaneously with another key.

KILLL

(Command)

Action

Format

Example

Description

Deletes the file with the specified filename from the memory card.

Kl LL filename

KI LL " BASI C. DAT"
Delete the file BASIC.DAT from the memory card.
Specify the name of a file existing in the memory card as a character string with

the filename parameter. An error occurs if the specified filename does not exist
in the memory card.

The filename parameter can specify any program or data file in the memory
card. However, an error occurs if the KILL command is executed on a write-pro-
tected file.

107

KLEN Reference

Section 4

KI NPUT

An error occurs if the KILL command is executed on a file opened with the OPEN
statement. Close the file with the CLOSE statement before deleting it with the
KILL command. A file cannot be deleted with the KILL command if the file
attribute is set to write-protected with the SET command. Use the SET com-
mand to remove the write protection before deleting the file with the KILL com-
mand.

Kanji | NPUT

(Command)
Action

Format
Example

Description

KI NSTR

Automatically sets the Japanese input mode and reads data from the keyboard.

KI NPUT character variable

KI NPUT KANJI $

Waits for keyboard input of the Japanese character data to assign to the
character variable KANJIS.

The Japanese input mode is selected automatically when the KINPUT com-
mand is executed and the system waits for input of a Japanese (2-byte)
character from the keyboard. After the data is input, it is assigned to the charac-
ter variable when the Return Key is pressed.

Kanji I N STRi ng

(Function)
Action

Format
Example

Description

KLEN

Determines the position of the specified characters in the character string

Kl NSTR ([start position,] character string 1, character string 2)

K=KI NSTR (2, A$, JAPAN)
Searches for the character string “JAPAN” from the second character of the
character string A$ and assigns the position from the start of the array as a
number of bytes to variable K.

The KINSTR function finds a specified character string 2 in a character string 1
and returns the position of character string 2 from the start of character string 1.
1-byte and 2-byte characters are each counted as a single character.

Specify a value with the start position parameter to set the the position to start
searching character string 1. Specify the value between 1 and the number of
characters in character string 1. If omitted, searching starts from the beginning
of the character string. The function returns the value 0 if the specified start posi-
tion is larger than the number of characters in character string 1.

Specify a character constant or a character variable for character string 1, the
character string to search. The function returns the value 0 if the specified char-
acter string 1 is a null string (").

Specify a character constant or a character variable for character string 2, the
character string to be searched for. The function returns the specified start posi-
tion value if character string 2 is specified as a null string (").

The function returns the value 0 if the specified character string 2 does not exist
in character string 1.

Kanji LENgt h

(Function)
Action

Format

Example

108

Determines the number of characters in a character string including 2-byte
characters.

KLEN (character string [, function])

L=KLEN (" BASI C")
Assigns the length of the character string “BASIC” (5) to variable L.

.. Reference

Section 4

KM D$

Description

The KLEN function returns the length of a specified character string. 1-byte and
2-byte characters are each counted as a single character.

Specify a character constant or a character variable for character string 1, the
character string to search. The character string can contain both 1-byte and
2-byte characters.

Specify the function parameter as an integer. The default value is 0. The
meaning of the function parameter is shown below.

Function Description

0 Determines the total number of 1-byte and 2-byte characters in the
character string.

Determines the total number of 1-byte characters only.

Determines the total number of 2-byte characters only.

Determines the total number of wide characters only.

Kanji MDdle $

(Function)

KNJ$

Action

Format

Example

Description

Extracts part of a character string containing 2-byte Japanese characters.

KM D$ (character variable, start position [, number of characters])

KA$=KM D$(K$, 1, 10)

Extracts 10 characters from the first character of the character string K$ and
assigns them to the character string KA$.

Extracts a specified length of character string from a character string containing
2-byte Japanese characters.

Specify a character constant or a character variable for character variable to
search. Do not specify a null string (" ”).

Specify the number of characters to be extracted with the number of characters
parameter. The function returns a null string (* ") if the specified number of
characters is negative or exceeds the actual number of characters between the
start position and the right end of the character variable. Set the start position to
1 to select a string from the start of the specified character variable.

Specify the number of characters to be extracted with the number of characters
parameter. All characters to the right of the start position are replaced if the num-
ber of characters is omitted or if the number of characters exceeds the actual
number of characters between the start position and the right end of the charac-
ter variable.

KaNJi $

(Function)

Action

Format

Example

Description

Determines the character corresponding to a Shift JIS character code.

KNJ$ (character string)

K$=KNJ$(” 8260)

Assigns 2-byte character “A” corresponding to the Shift JIS code 8260 to
variable K$.

The KNJ$ function returns the 2-byte character corresponding to the specified
4-digit hexadecimal Shift JIS code.

Specify a Shift JIS code with the character string.

109

KPOS Reference

Section 4

KPLOAD

The JIS$ function has the opposite function to the KNJ$ function. The JIS$
function returns a 4-digit hexadecimal Shift JIS code corresponding to the first
2-byte character in a character string.

Kanji Pattern LQAD

(Command)
Action

Format

Example

Description

KPOS

Registers user-defined character patterns in the F300.

KPL OAD character code, integer array name

KPLOAD &HECA0, CHRPTNY%

Register the Kanji pattern defined in array CHRPTN% as the Kanji code
&HECA40.

The KPLOAD command registers user-defined character patterns in the F300.

Specify the code to be registered with the character code parameter. Use the
codes between &HF8 and &HFF for standard characters and the codes
between &HEB9F and &HEBFC or between &HEC40 and &HEC61 for wide
characters. An error occurs if the character code is specified outside these
ranges.

Specify the array variable containing the character pattern with the integer array
name. The array variable must previously be declared with the DIM command as
a one-dimensional array with 16 elements.

Store the dot image of the character pattern in elements 1 to 16 of the array
variable in the format shown below:

Array element 1 = &H1281
Array element 2 = &H2242

Array element 16 = &HO

Kanji PGCSition

(Function)
Action

Format

Example

Description

110

Determines the number of bytes to the specified character position in the
character string which includes 2-byte Japanese characters.

KPCOS (character string, character position)

K = KPCS (" ABCr”, 5)

Assigns the number of bytes (8) up to the 5th character position in the character
string " ABQEF” to variable K.

The specified character string may contain a mixture of 1-byte and 2-byte char-
acters. The KPOS function returns the number of bytes up to the specified char-
acter position in the character string.

Specify the position of a character in the character string with the character posi-
tion parameter.

The function returns 0 if the number of characters in the character string is less
than the character position.

LABEL

Reference

Section 4

KTYPE

Kanji TYPE

(Function)

LABEL

Action

Format

Example

Description

Determines the type of character at a specified position in the character string.

KTYPE (character string, character position)

T=KTYPE(K$, 3)

Determines the type of the 3rd character in the character string and assigns the
corresponding number to variable T.

The KTYPE function determines the type of character at a specified character
position in the character-string as a value between 0 and 2. The meanings of the
returned numbers is shown below.

Returned value Description

0 1-byte alphanumeric standard-sized character
1 2-byte double-sized character

2 2-byte standard-sized character

Specify the character string as a character constant or a character variable
containing a mixture of 1-byte and 2-byte characters.

Specify the position of the required character from the start of the character
string as an integer with the character position parameter. Specify the character
position between 0 and the length of the character string. Count both 1-byte and
2-byte characters as one character.

The KLEN function can be used to determine the number of characters in a
character string.

LABELI ng

(Command)

Action

Format

Example

Description

Carries out labelling based on the detailed runlength data measured with the
MEASURE command.

LABEL [link evaluation constant]

LABEL
Labels using eight-neighbor evaluation of the linked status.
The LABEL command carries out labelling based on the detailed runlength data

measured with the MEASURE command. Labelling data is read with the LDATA
function or LPOINT function.

The RMODE command and MEASURE command must be executed each time
before the LABEL command is executed.

The specified link evaluation constant specifies the link evaluation method, as
follows:

0: eight-neighbor evaluation
1: four-neighbor evaluation
The default value is 0.

The following commands and functions are related to the labelling carried out
with the LABEL command:

LPUTIMG LSORT
LDATA LPOINT

m

LDATA Reference Section 4
L BOUND Lower BOUNDar y
(Function)

Action Determines the lower boundary of an array dimension qualifier.

Format L BOUND (array name [, number of dimensions])

Example I =LBOUND(A, 1)

Assigns the lower limit of the qualifier of the 1-dimensional array A to variable I.
Description The LBOUND function returns the lower boundary of an array dimension

LCASES

qualifier.

Specify the name of the array for which the qualifier is to be determined with the
array name parameter.

Specify the number of dimensions of the array with the number of dimensions
parameter. The default value is 1.

The returned value is either 0 or 1, as set when the OPTION BASE command
was executed.

Lower CASE$

(Function)

Action

Format

Example

Description

LDATA

Converts uppercase letters in the character string to-lower case letters.

L CASES (character string)

I NPUT "string:”, A$
| F LCASE$(A$) ="end” THEN END

If the character string input as A$ is “END”, the character string is converted to
“end.”

The LCASES$ function converts uppercase letters in the character string to-lower
case letters. Existing lowercase letters remain unchanged.

Label DATA

(Function)

Action

Format

Example

Description

112

Measures data for the labelled image obtained with the LABEL command.

L DATA (label#, item)

X=LDATA(2, 1)
Assigns the value of the center of gravity in the X direction of the image labelled
#2 to variable X.
The LDATA function measures data from an image labelled with the LABEL

command.

Specify the number of the labelled image as the label#. The label humbers
(label#) start from 1.

LET Reference

Section 4

LEFTS

Specify the item with one of the following numbers:

: Area

: Center of gravity X

: Center of gravity Y

: Main axis angle

: Peripheral length

: Area after filling

: Number of holes

: X coordinate of top-left corner of external box

: 'Y coordinate of top-left corner of external box

: X coordinate of bottom-right corner of external box
10: Y coordinate of bottom-right corner of external box

O©CoO~NOOOTA WNEFEO

The LABEL command must be executed before the LDATA function is used.

LEFTS

(Function)
Action Extracts a character string with the specified length from the left end of the
specified character string.
Format LEFTS$ (character string, character string length)
Example B$=LEFT$(A$, 3)
Extracts 3 characters from the left end of character string A$ and assigns them to
variable B$.
Description Extracts a character string of any length from the start of the specified character
string.
The character string can be specified as a character constant or character vari-
able. A null string (" ") cannot be specified.
Specify the length of the extracted character string in bytes with the character
string length parameter as a value between 1 and the length of the character
string. A null string is returned if 0 is specified for the character string length. The
entire specified character string is returned if the character string length is
greater than the length of the specified character string.
(Function)
Action Determines the number of bytes in a character string.
Format LEN (character string)
Example L=LEN(” F300 OVL")
Assigns the length of the character string “F300 OVL" (8 bytes) to variable L.
Description The LEN function returns the length of a specified character string in bytes.
Use the KLEN function to return the length of a string containing 2-byte
characters.
(Command)
Action Assigns the expression at the right to the variable at the left.
Format [LET] variable = expression

113

.. Reference

Section 4

LEVEL

Example

Description

LET A=(B+C)/2 or A=(B+C)/2

Assigns the sum of the numeric variables B and C divided by 2 to variable A.

Assigns the expression at the right to the variable at the left. It is not possible to
specify a variable at the right or an expression at the left.

The function name LET can be omitted. LET is normally omitted in a program.

The variable can be a numeric variable or a character variable. Similarly, the
expression can be a numeric expression or a character expression. However,
the types must match on the left and right. If a numeric variable is specified at the
left, a numeric expression must be specified to the right. Similarly, if a character
variable is specified at the left, a character expression must be specified to the
right.

LEVEL

(Command)

LI NE

Action

Format

Example

Description

Sets the binary level for each binary image plane.
LEVEL binary image plane#, lower limit, upper limit [, mode]

LEVEL 3, 100, 200

Set the binary level limits for the binary image plane 3 to 100 and 200,
respectively.

The LEVEL command sets the binary level for each binary image plane.

Specify the binary image plane for which the level is set with the binary image
plane# parameter. Set the binary image plane# to —1 to set all binary image
planes to the same binary level.

The gradations of the raw input image are converted to a binary image with all
values between the specified lower limit and upper limit represented as 1.

Set the binary conversion mode with the mode parameter. The new binary level
is calculated by a logical operation on the present binary level. The present
setting is cancelled if the mode parameter is omitted. Before setting a value with
the LEVEL command, cancel the setting that has been made.

OR: set the specified range to 1
NOT: set the specified range to 0
XOR: reverse the specified range

L1 NE

(Command)

114

Action

Format

Example

Draws a straight line in VRAM.

LI NE x1, Y1, X2, Y2, VRAM [, [page#] [, drawing density or drawing mode]]

LI NE 45, 35, 200, 250, 2, , 255

Draws a straight line with drawing density 255 in the window memory between
the start point (45, 35) and end point (200, 250).

LINE INPUT

Reference Section 4

LI NE

Description

| NPUT

The LINE command draws a straight line between the start and end points.
Specify the VRAM where the line is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the page# or set to 0.

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : O written to memory
1: 1 written to memory

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

LI NE | NPUT

(Command)

Action

Format

Example

Description

Assigns a line of data input from the keyboard to a character variable.

LI NE | NPUT [prompt character string{, or ;}] character variable

LI NE | NPUT " DATA"; A$

Displays “DATA” on the screen and waits for keyboard input of the line of
character data to be assigned to the character variable A$.

Operation waits for data input from the keyboard when the LINE INPUT com-
mand is executed. Enter the line of data and press the Return Key to assign the
data to the variable.

Specify a character string for the prompt character string. This character string is
displayed to prompt for input of the required data. The prompt character string
must be separated from the subsequent character variable by a semicolon ().
The specified prompt character string only is displayed when the LINE INPUT
command is executed.

Input the character variable as up to 255 1-byte characters, blanks, commas (,),
double quotation marks (), and numbers. All characters entered from the time
the prompt is displayed until the Return Key is pressed are handled as a single
character string.

If the Return Key is pressed without entering characters, a null string (") is
assigned to the character variable.

115

LIST Reference

Section 4

LI NE | NPUT WAI T

LINE | NPUT WAI T

(Command)
Action

Format

Example

Description

LI NE | NPUT#

Inputs one line of data from the keyboard with a time limitation.

LI NE | NPUT WAI T wait time, [prompt character string;] character
variable

LI NE | NPUT WAI T 70, ” ANSVER’ ; AN$

Displays the input prompt message “ANSWER” on the screen and waits 7
seconds for keyboard input of the character data to be assigned to the character
variable ANS$.

Operation waits for the specified wait time for data input from the keyboard when
the LINE INPUT WAIT command is executed. Enter the line of character data
and press the Return Key within the specified wait time to assign the data to the
character variable.

The LINE INPUT WAIT command is identical to the LINE INPUT command,
except for the time limit. If the Return Key is pressed without entering characters,
a null string (") is assigned to character variable. If the time specified by wait time
passes, the variables will not change.

Specify the wait time in units of 0.1 second.

LI NE | NPUT#

(Command)
Action

Format

Example

Description

LI ST

Reads a line of data from a sequential access file and assigns it to a character
variable.

LI NE | NPUT # file#, character variable

LI NE | NPUT #1,L$
Reads a line of data from file #1 and assigns the data to character variable L$.
Specify the file# as the number in which the random access file was opened with
the OPEN statement.

All characters including blanks, commas (,), double quotation marks ("), and
numbers between the first character read (including a blank) and the carriage
return (CHR$(13)) are read to the character variable.

The LINE INPUT# command can be used in combination with the FOR ... NEXT
statements to read consecutive lines of a file up to each carriage return
(CHR$(13)) to successive character variables.

The LINE INPUT# command is ideal for reading a line of data up to the carriage
return (CHR$(13)) from a random access file containing both character and
numeric variables delimited by blanks or commas (,).

Unlike the LINE INPUT command, the LINE INPUT# command displays no
prompt message.

LI ST

(Command)
Action

Format
Example

Description

116

Displays all or part of the program contents.

LI ST [line# 1] [-line# 2]
LI ST 100-190
Displays the program between line 100 and line 190 on the screen.

Displays the program between line# 1 and line# 2 on the screen.

The entire program is displayed if the line# 1 and line# 2 parameters are omitted.
Only line# 1 is printed if line# 2 is not specified. Lines from the start of the
program to line# 2 are printed if line# 1 is not specified.

LOC Reference

Section 4

LNUM

Use a period (.) instead of line# 1 or line# 2 to specify the current program line.
The current line is indicated by the pointer. The current line is the last line input
during program creation or the last line displayed with the LIST command.

Label NUMber

(Function)
Action

Format

Example

Description

LOAD

Determines the number of labelled images.

LNUM
LN=LNUM

Assigns the number of labelled images to variable LN.

The LNUM functions determines the number of images labelled with the LABEL
command.

The LABEL command must be executed before the LNUM function is used.

-1 is returned if over 255 labels exist.

LOAD

(Command)
Action

Format

Example

Description

LOC

Loads a program from disk to memory.

L OADfile name [, R]

LOAD " C. PROL”
Loads the file PRO1 from the memory card.

The LOAD command loads the file specified with the file name parameter. The
currently loaded program is deleted from memory.

If the R option is specified, the program is run with the currently open files
immediately it is loaded.

Use the MERGE command to load a program without deleting the currently
loaded program.

LOCat i on

(Function)

Action Determines the current I/O position within the specified file.

Format LCI:(fiIe#)

Example L=LOC(1)
Assigns the current position of I/O operation in file#1 to variable L.

Description Specify the file# as the number in which the file was opened with the OPEN
statement.
The position returned by the LOC function depends on the type of file, as defined
in the table below.

File Type Value returned by LOC

Random access file

Returns the last record# read or written with the GET# or PUT# command as an integer
value.

Sequential access file

Returns the number of records read or written since the file was opened as an integer value.

RS-232C

Returns the number of bytes remaining in the communication buffer as an integer value.

117

LOG Reference

Section 4

LOCATE

LOCATE

(Command)
Action

Format

Example

Description

LOF

Sets the cursor position on the text display and whether the cursor is displayed.

LOCATE [column] [, line] [, cursor display switch]

LOCATE 5, 20

Moves the cursor position to the character 5 position (6th character from the left)
on line 20 (21st line from the top).

The LOCATE command moves the cursor on the text display and turns the
cursor display on or off.

Specify the horizontal (X) coordinate with the column parameter between 0 and
63. The default value is 0.

Specify the vertical (Y) coordinate with the line parameter between 0 and 24. If
this value is omitted, the cursor remains in the line position when the LOCATE
command was executed.

Specify the cursor display switch parameter as 0 or 1. The meaning of this
setting is shown in the table below. If this value is omitted, the cursor display
status when the LOCATE command was executed is maintained.

Cursor display switch parameter Description
0 No cursor is displayed on the screen.
1 A cursor is displayed on the screen.

It is not possible to omit the X coordinate, Y coordinate, and cursor display
switch with a LOCATE command.

Length O File

(Function)
Action

Format

Example

Description

LOG

Determines the size of a file.

L OF (file#)

SI ZE=LOF(1)

Assigns the size of file#1 open for I/O operation to variable SIZE.

Specify the file# as the number in which the file was opened with the OPEN
statement.

The size returned by the LOF function depends on the type of file, as defined in
the table below.

File Type Value returned by LOF

Random access file Returns the file size as the maximum record number.

Sequential access file Returns the file size as a number of bytes.

RS-232C Returns the free space in the communication buffer as a
number of bytes.

LOGarithm

(Function)
Action

Format

Example

118

Determines the natural logarithm of a number.

L OG (numeric expression)

A=LOX B)

Assigns the natural logarithm of variable B to variable A.

LPUTIMG . Reference

Section 4

Description

LPO NT

The LOG function returns the natural logarithm (to base e = 2.71828) of the nu-
meric expression parameter. The numeric expression must be specified as a
positive value.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The LOG function always returns a double-
precision real number.

The EXP function has the opposite action to the LOG function.

Label PO NT

(Function)
Action

Format

Example

Description

LPUTI M5

Determines the label number of a labelled image at a specified position.
LPA NT (x,)

N=LPOI NT(128, 256)

Assigns the label number from the labelled image at coordinates (128, 256) to
variable N.

The LPOINT function finds the label number at a specified coordinate position
from the label number data obtained with the LABEL command

The function returns 0 if no labelled image or a hole in a labelled image exists at
the specified coordinates.

The LABEL command must be executed before the LPOINT command is used.

Label PUT | MaGe

(Command)
Action

Format

Example

Description

Draws a labelled image in VRAM.

LPUTI MGlabel#, VRAM [, [page#] [, plane#]]

LPUTIMS 2, 3, , 2

Draws the image with label #2 to plane 2 of the image memory.

The LPUTIMG command draws labeled image data obtained with the LABEL
command to VRAM.

Specify the label number of the image to be drawn with the label# parameter.

Specify the VRAM where the image is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the page# or set to 0.

Specify the plane# when writing to a frame memory. Specify —1 to write the
image to all planes. The image is not written to planes write protected with the
MASKBIT command.

The LABEL command must be executed before the LPUTIMG command is
used.

119

MASKBIT . Reference

Section 4

LSET

Left SET

(Command)
Action

Format

Example

Description

LSORT

Writes left-justified character data to a variable area defined with the FIELD
command.

L SET character variable = character string

LSET A$="BASI C’

Left justifies the character string “BASIC” and writes it to the variable area
defined with the variable name AS$.

Specify a character variable name defined with the FIELD command with the
character variable parameter.

Specify a character constant or character variable as the character string.

Excess characters are lost from the right of the character string if the length of
the specified character string exceeds the length of the character variable
defined with the FIELD command. Conversely, if the length of the specified char-
acter string is less than the length of the character variable, the remaining
positions are filled with blanks.

Label SORT

(Command)
Action

Format

Example

Description

LTRI Mb

Renumbers labels in order of area.

L SORT mode

LSORT 0
Renumbers the label numbers in descending order of area.

The LSORT command sorts the labeled image data obtained with the LABEL
command into order of area.

Specify the mode parameter to 0 to sort the label numbers in descending order
or to 1 to sort the label numbers in ascending order.

The LABEL command must be executed before the LSORT command is used.

Left TRI Mp

(Function)
Action

Format

Example

Description

MASKBI T

Deletes spaces to the left of a character string.

LTRI Mb (character string)

AS=LTRI MB(" JAPAN')
Assigns “JAPAN" to variable A$.

Returns the character string (1- or 2-byte characters) with the spaces removed
from the left.

MASKBI T

(Command)
Action

Format

Example

120

Disables writing to specific planes in the frame memory.

MASKBI T vRAM, [page#], bit data

MASKBI T 2, , &HFF
Disables writing to the window memory.

MDATA?2 .. Reference

Section 4

Description

VDATA

The MASKBIT command enables or disables writing to each plane of the frame
memory.

Specify the VRAM with the VRAM parameter, as follows:

2: Window memory
3: Image memory
4: Shading memory

Omit the page# or set to 0.

Specify the plane to be write disabled with the bit data parameter. Set the bit
corresponding to a plane to 1 to disable writing or to 0 to enable writing.

Measur e DATA

(Function)

Action

Format

Example

Description

VDATAZ

Reads the measured results, such as area, center of gravity, and axis angle.

MDATA (binary image plane#, measured data)

A=NDATA(0, 2)

Assigns the center of gravity X coordinate of the binary image in plane 0 in pixels
to variable A.

The MDATA function reads the area, center of gravity, and the axis angle results
measured with the MEASURE command.

Specify the binary image plane# as the plane number from which the data is
read.

Specify the measured data with one of the values listed below to determine the
the type of measured data to read. The calibration is based on the current scene
data, which is specified with the CHANGE command.

: Area (pixel units)

: Area after calibration

: Center of gravity X (pixel units)

: Center of gravity X after calibration
: Center of gravity Y (pixel units)

: Center of gravity Y after calibration
: Axis angle (pixel units)

: Axis angle after calibration

The MMODE and MEASURE commands must be executed before the MDATA
function is used.

~NOoO oA WNREO

Measur e DATAZ2

(Function)

Action

Format

Example

Description

Reads the edge angle measurement results.

MDATAZ2 (binary image plane#, X array, Y array, function)

A=MDATA2(0, X, Y, 0)

Assigns the edge angle in the rectangular region defined by X array and Y array
on binary image plane 0 to variable A.

The MDATA2 function reads the edge angle results measured with the
MEASURE command.

Specify the top-left coordinates of the rectangle where the edge angle is to be
determined with X array and the bottom-right coordinates with Y array. These
coordinates are matched to the rectangular window.

121

MERGE ... Reference

Section 4

VEASURE

Set the function parameter to 0 to determine uncalibrated (pixel) data or to 1 to
determine calibrated data.

The calibration is based on the current scene data, which is specified with the
CHANGE command.

The MMODE command must be used to turn on the run function and the
MEASURE command executed before the MDATA2 function is used.

VEASURE

(Command)
Action

Format

Example

Description

IVENU

Measures the area, center of gravity, axis angle, simple run length, and detailed
run length.

VEASURE

MEASURE
Measures under the conditions set using MMODE or RMODE.

The MEASURE command measures the area, center of gravity, axis angle,
simple run length, and detailed run length under the conditions set using
MMODE and RMODE command.

Set the measurement conditions with the MMODE command before measuring
the area, center of gravity, or axis angle. Turn on the run function and set the
measurement conditions with the MMODE command before measuring the
simple run length.

Set the measurement conditions with the RMODE command before measuring
the detailed run length.

IVENU

(Command)
Action Returns to the Menu mode.
Format MENU
Example VENU
Returns to the Menu mode.
Description Quits the OVL mode and returns to the Menu mode.
(Command)
Action Merges a program from the memory card with the program in memory.
Format MERGE filename
Example MERCE " C. PROL”
Merges the program PRO1 from the memory card.
Description Merges the program currently loaded in memory with the program specified by

122

the filename parameter from the memory card. The program is reorganized into
line number order after merging.

Existing lines in memory are deleted if line numbers are duplicated in the
programs in memory and in the memory card.

The program cannot be executed automatically after merging. Use the CHAIN
command to automatically execute programs.

MKD$

Reference

Section 4

M D$

M Ddl e$

(Function, Command)

VKD$

Action

Format

Example

Description

Extracts part of a character string. Changes part of a character string, if required.

Format 1 (function): M [ﬁ(character variable, start position [, number of
characters])

Format 2 (command): M D$(character variable, start position [, number of
characters]) = character string

M D$(A$, 6, 8) =" F300 OWL”

Replaces the 8 characters starting from the 6th character with the character
string “F300 OVL” (8 characters).

Format 1

Extracts the specified number of characters from the start position of the charac-
ter variable.

Specify the position of the first character in the character variable to be extracted
as a value between 1 and the number of characters in the character variable.

Specify the number of characters to be extracted with the number of characters
parameter. All characters to the right of the start position are extracted if the
number of characters is omitted or if the number of characters exceeds the
actual number of characters between the start position and the right end of the
character variable.

Format 2

Replaces the specified number of characters from the start position of the char-
acter variable with the character string.

Specify the position of the first character in the character variable to be replaced
as a value between 1 and the number of characters in the character variable.

Specify the number of characters to be replaced with the number of characters
parameter. All characters to the right of the start position are replaced if the num-
ber of characters is omitted or if the number of characters exceeds the actual
number of characters between the start position and the right end of the charac-
ter variable.

Specify the character string as a character constant or a character variable.

MaKe Doubl e$

(Function)

Action
Format

Example

Description

Converts a double-precision value to internal character-type representation.
MKD$ (double-precision value)

C$=MKD$(CH)
Converts the specified double-precision real number variable C# to a character
string and assigns it to variable C$.

Because numeric data cannot be handled in a random access file, the double-
precision numeric data must be converted to character-type numeric data with
the MKD$ function before it can be written to a random access file. This charac-
ter-type numeric data is then converted to a character string corresponding to
the internal representation (binary representation) of the number type, which is
used in the random access file.

The MKD$ function converts a double-precision real number to an 8-byte
character string.

The CVD function reverts a character-type double-precision number converted
with the MKD$ function to a numeric value.

123

MKL$ Reference

Section 4

VKDI R

MaKe DI Rectory

(Command)
Action

Format

Example

Description

WKI $

Creates a new directory for the memory card.

MKDI R directory name

MKDI R " BASI C’
Creates a new directory named “BASIC” under the current directory.

Specify the name of the new directory name with the directory name parameter.
An error occurs if a directory with the specified name already exists in the same
path.

The new directory is created under the current directory if no new path is
specified with the directory name.

If a new path is specified with the directory name, the new directory is created
outside the current directory.

Use the ¥ symbol to delimit directories.

MaKe | nteger$

(Function)

Action Converts an integer value to internal character-type representation.

Format MKI $ (integer)

Example AS=MWKI $(A%

Converts the specified integer variable A% to a character string and assigns it to
variable A$.

Description Because numeric data cannot be handled in a random access file, the integer
data must be converted to character-type numeric data with the MKI$ function
before it can be written to a random access file. This character-type numeric
data is then converted to a character string corresponding to the internal
representation (binary representation) of the number type, which is used in the
random access file.

The MKI$ function converts an integer to a 2-byte character string.
The CVI function reverts a character-type integer number converted with the
MKI$ function to a numeric value.
VKLS$ MaKe Long $
(Function)

Action Converts a long integer value to internal character-type representation.

Format MKL$ (long integer)

Example AS=MKLS(A&)

Converts the specified long integer variable A& to a character string and assigns
it to variable AS$.

Description Because numeric data cannot be handled in a random access file, the long

124

integer data must be converted to character-type numeric data with the MKL$
function before it can be written to a random access file. This character-type
numeric data is then converted to a character string corresponding to the
internal representation (binary representation) of the number type, which is
used in the random access file.

The MKL$ function converts a long integer to a 4-byte character string.

The CVL function reverts a character-type long integer number converted with
the MKL$ function to a numeric value.

MMODE .. Reference

Section 4

VKS$

MaKe Singl e$

(Function)
Action

Format

Example

Description

IVMODE

Converts a single-precision value to internal character-type representation.
VKS$ (single-precision value)
B$=MKS$(B!)

Converts the specified single-precision real number variable B! to a character
string and assigns it to variable B$.

Because numeric data cannot be handled in a random access file, the single-
precision numeric data must be converted to character-type numeric data with
the MKS$ function before it can be written to a random access file. This charac-
ter-type numeric data is then converted to a character string corresponding to
the internal representation (binary representation) of the number type, which is
used in the random access file.

The MKS$ function converts a single-precision real number to a 4-byte
character string.

The CVS function reverts a character-type single-precision number converted
with the MKSS$ function to a numeric value.

Measur e MODE

(Command)
Action

Format

Example

Description

Sets the basic measurement mode for each binary image plane.

MVODE binary image plane#, measured pixels [, [window function] [, [paint
function] [, [fill function] [, run function]]]]

MMODE 0, 0, 1

Sets measurement of black pixels for binary image plane 0, with the window
function on.

The MMODE command sets the conditions for measurement with the
MEASURE command for each of the 8 binary image planes. Specify the binary
image plane for which the measurement conditions are set with the binary image
plane# parameter. Set the binary image plane# to —1 to set the conditions for all
binary image planes simultaneously.

Set the measured pixels parameter to set which pixels to measure, as follows:
0: Black pixels
1: White pixels
Normally set the window function parameter to 1.
Set the paint function parameter to set the paint and pattern matching functions,
as follows:
0: No painting or pattern matching
1: Carry out painting
2: Carry out pattern matching
The default value is 0.
Set the fill function parameter to set the contour measurement, as follows:
0: Normal

All of the white pixels in the window will be taken as the object for mea-
surement.

1: Fill
All of the white pixels between the starting and ending points along the
horizontal axis will be measured.

The default value is 0.

125

NPIECE

... Reference

Section 4

NANVE

Set the run function parameter to set the simple run length data measurement,
as follows:

0: Do not measure the simple run length data
1: Measure the simple run length data
The default value is 0.

NAVE

(Command)

NEW

Action

Format

Example

Description

Renames files stored in the memory card.

NANE old filename AS new filename

NAME " ABC' AS " DEF”

Renames the file name ABC as the file name DEF.

Specify the old filename as the name of an existing file in the memory card as a
character string. An error occurs if the specified filename does not exist.

Specify the new name of the file with the new filename parameter. Use only
1-byte characters. An error occurs if a file with the same name as the specified
new filename already exists.

A filename cannot be renamed with the NAME command if the file attribute is set
to write-protected with the SET command. Use the SET command to remove the
write protection before renaming the file with the NAME command.

NEW

(Command)

Action

Format

Example

Description

NPl ECE

Deletes the program from memory.

NEW
NEW

Deletes the program from memory.

The NEW command deletes the program from memory and resets numeric
constants to 0 and character constants to a null string (" ”).

Any open /O files are closed.

The Direct mode is selected after the NEW command is executed.

Nunber of Pl ECE

(Function)

126

Action

Format

Example

Description

Determines the number of smaller character strings the specified character
string is divided into by the delimiters.

NPI ECE (character string, delimiter)

A=NPI ECE(” OVRON F300"," ")

Because the space character is set as the delimiter, OMRON and F300 are
considered as separate character strings, so 2 is assigned to variable A.

The NPIECE function determines the number of small character strings
separated by the delimiters in the specified character string.

Returns the number of character strings divided by the delimiters.

The function returns 1 if the delimiter character is not contained in the character
string.

ON COM GOSUB .

Reference Section 4

oCT$

OCTal $

(Function)

ON COM GOSUB

Action

Format

Example

Description

Converts a decimal number to an octal character string.

OCT$ (numeric expression)
A$=" &0’ +OCT$(10)

Converts the decimal value 10 to the octal character string 12, concatenates this
character string with the character string “ &0”, and assigns the result (&012) to
the character variable A$.

The OCT$ function converts a decimal value to an octal character string. It does
not add the “ &0O” prefix to indicate an octal character string.

Specify the numeric expression as a decimal numeric constant or numeric
variable between —2147483648 (—231) and 2147483647 (231-1). Any decimal
places in the specified numeric expression are rounded off to create an integer
which is converted to the octal character string.

The relationship between the decimal numeric expression and octal character
string is as follows:

Numeric expression (decimal) Octal character string
—2147483648 to -1 “20000000000" to “37777777777"
0to 2147483647 ‘0" to “L77TTTTTTIT”

To convert an octal character string back to numeric data, append the “ &0”
prefix to indicate an octal character string, then convert the character string with
the VAL function.

ON COMmuni cation GO to

SUBr out i ne

(Command)

Action

Format

Example

Description

Defines the jump destination of the interrupt subroutine when data is received at
the communication port.

ON COM(Rs-232C port#) GOSUB line# or label
ON COM 1) GOSUB *PROCESS

Defines the jump destination of the interrupt subroutine when data is received by
the RS-232C channel 0 as the label name *PROCESS.

Specify the RS-232C port# as 1 or 2. The default value is 1. The ON COM
GOSUB commands define the jump destination of the interrupt subroutine
executed when data is received at the specified communication port. Interrupt
operation starts when it is enabled by the COM ON command. Operation returns
when the RETURN command is executed.

10 OPEN "COM " AS #1
20 ON COM GOSUB *LABEL1
30 CoMON

50 *LABELL —
! Interrupt subroutine

90 RETURN —

127

ON INTR GOSUB . Reference Section 4

ON ERROR GOTO

ON ERROR GOTO

(Command)

ON HELP GOSUB

Action

Format
Example

Description

Defines the first line of the error processing routine executed when an error
occurs.

ON ERROR GOTOline# or label or 0

ON ERROR GOTO 1000
Defines the jump destination when an error occurs as line# 1000.

The ON ERROR ... GOTO command defines the jump destination of the error
processing routine executed when an error occurs. When an error occurs,
operation jumps to the specified jump destination and the error routine is
executed to reset the error.

Specify the first line of the error processing routine with the line# or label param-
eter.

Specify 0 instead of the line# or label to cancel the error processing routine jump
destination defined previously with the ON ERROR GOTO command. If an error
subsequently occurs, an error message is displayed and program operation
stops. When an error occurs, the error code and line number where the error
occurred are assigned to the system variables ERR and ERL.

Operation returns to the original program when the RESUME command at the
end of the error processing routine is executed.

ON HELP key GO to SUBroutine

(Command)

ON | NTR GOSUB

Action

Format

Example

Description

Defines the first line of the interrupt subroutine executed when the HELP Key is
pressed.

ON HELP GOSUB line# or label

ON HELP GOSUB *SHORI

Defines the jump destination when the HELP Key is pressed as the label name
*SHORI.

The line# or label parameter defines the jump destination of the interrupt
subroutine executed when the HELP Key is pressed.

The interrupt subroutine defined by the line# or label parameter is executed
when the HELP Key is pressed during program execution if the interrupt
operation is enabled with the HELP ON command.

The ON HELP GOSUB command is one type of key input interrupt routine. It is
used as an aid to program operation by explaining how to use the program and
input data.

Operation returns to the original program when the RETURN command at the
end of the interrupt subroutine is executed. Operation can be transferred to a
different position from the position where the interrupt occurred by specifying a
line# or label parameter with the RETURN command.

ON | NTeRrupt GO to SUBroutine

(Command)

128

Action

Format
Example

Defines the first line of the interrupt subroutine executed when a STEP interrupt
occurs.

ON | NTR GOSUB linet# or label

ON | NTR GOsuB 2000

Defines the first line of the interrupt subroutine executed when a STEP interrupt
occurs as line# 2000.

ON STOP GOSUB Reference Section 4

Description

The ON INTR GOSUB command defines the line# or label of the first line of the
interrupt subroutine executed when a STEP interrupt occurs. Any further STEP
interrupt occurring during execution of the interrupt subroutine is ignored.

ON KEY GOSUB ON function KEY GO to SUBroutine

(Command)

ON STOP GOSUB

Action

Format

Example

Description

Defines the first line of the interrupt subroutine executed when a function key is
pressed.

ON KEY GOSUB linet or label [, line# or label...]

ON KEY GOSUB , , *PROCESS

Defines the jump destination when a function key (F3) is pressed as the label
name *PROCESS.

The line# or label parameter defines the jump destination of the interrupt
subroutine executed when a function key is pressed.

Up to ten line# or label parameters can be specified delimited by commas (,).
The order of the line# or label parameters corresponds to the function key num-
bers.

The interrupt subroutine defined by the line# or label parameter is executed only
when the corresponding function key is pressed during program execution.

The ON KEY GOSUB command is one type of key input interrupt routine. Defin-
ing frequently executed routines or frequently input data in the interrupt
subroutines makes the function keys a convenient aid to programming.

Operation returns to the original program when the RETURN command at the
end of the interrupt subroutine is executed. Operation can be transferred to a
different position from the position where the interrupt occurred by specifying a
line# or label parameter with the RETURN command.

ON STOP key GO to SUBroutine

(Command)

Action

Format

Example

Description

Defines the first line of the interrupt subroutine executed when the STOP Key is
pressed.

ON STOP GOSUB line# or label

ON STOP GOSUB *PROCESS

Defines the jump destination when the STOP Key is pressed as the label name
*PROCESS.

The line# or label parameter defines the jump destination of the interrupt
subroutine executed when the STOP Key is pressed.

The interrupt subroutine defined by the line# or label parameter is executed
when the STOP Key is pressed during program execution if the interrupt
operation is enabled with the STOP ON command.

The ON STOP GOSUB command is one type of key input interrupt routine. De-
fining how to stop a specified operation in the interrupt subroutine at the
specified jump destination allows the operation to be stopped by pressing the
STEP Key.

Operation returns to the original program when the RETURN command at the
end of the interrupt subroutine is executed. Operation can be transferred to a
different position from the position where the interrupt occurred by specifying a
line# or label parameter with the RETURN command.

129

ON GOSUB Reference Section 4

ON TI ME$ GOSUB ON TIME$ GO to SUBroutine

(Command)

Action Defines the time when the timer interrupt is generated and the first line of the
interrupt subroutine.

Format ON Tl MES = “HH:MM:SS” GOSUB line# o label

Example ON TI ME$="02: 00: 00" GOSUB 1000
Sets the interrupt to be generated at 02:00:00 and defines the first line of the
interrupt subroutine executed at this time as line# 1000.

Description The ON TIME$ GOSUB command sets the time when the timer interrupt is

generated and defines the line# or label of the first line of the interrupt subroutine
executed at the set time. If branching is enabled with the TIME$ ON command,
the specified interrupt routine is executed when the set time is reached.

Set the time in the format: HH:MM:SS. Set the hour between 00 and 23 and set
the minutes and seconds between 00 and 59.

Example 1:
ON TIME$ = “01:00:00” GOSUB 1000 ... interrupt generated at 1 am.

Example 2:
ON TIMES$ = “10:30:00” GOSUB 1000 ... interrupt generated at 10.30 am.

The HH:MM:SS set with this command does not affect the setting of the internal
clock.

The line# or label parameter defines the first line of the interrupt subroutine.

Operation returns to the original program when the RETURN command at the
end of the interrupt subroutine is executed. Operation can be transferred to a
different position from the position where the interrupt occurred by specifying a
line# or label parameter with the RETURN command.

The time setting is 00:00:00 after the F300 power is turned on.

ON GOSUB ON GO to SUBroutine

(Command)
Action Branches program operation according to specified conditions.
Format ON expression GOSUB [line# or label] [, line# or label...]
Example ON S GOSUB *STARTRTN, *ENDRTN, *ERRRTN
Branches to subroutine *STARTRTN when the variable S equals 1, to
*ENDRTN when S equals 2, and to *ERRRTN when S equals 3.
Description Program operation branches to subroutines specified by a line# or label

according to the value of the expression.

The subroutine defined with the first line# or label parameter is executed when
the expression equals 1, the subroutine defined with the second line# or label
parameter is executed when the expression equals 2, and so on.

Program operation flows to the next line if the expression equals 0 or if the line#
and label parameters are omitted.

When the RETURN command at the end of the subroutine is executed, program
operation jumps back to the line after the ON GOSUB command. If a line# or
label parameter is specified with the RETURN command, operation jumps to the
specified line.

130

OPEN(1)

.. Reference

Section 4

ON GOTO

ON GO TO

(Command)

Action

Format

Example

Description

OPEN(1)

Branches program operation according to specified conditions.

ON expression GOT Olline# or label] [, line# or label...]

ON T GOTO 200, 500, 900

Branches to line 200 when the variable T equals 1, to line 500 when T equals 2,
and to 900 when T equals 3.

Program operation branches to the line specified by a line# or label according to
the value of the expression. Operation jumps to the line defined with the first
line# or label parameter when the expression equals 1, the second line# or label
parameter when the expression equals 2, and so on.

Program operation flows to the next line if the expression equals 0 or if the line#
and label parameters are omitted.

CPEN

Command

Action

Format

Example

Description

Opens afile.

OPEN filename [FOR {OUTPUT or INPUT or APPENDY}] AS file#
OPEN ” DATA01” FOR OUTPUT AS #1

Opens the sequential access file DATAOL in the memory card as file#1 to output
data to the file.

A sequential access file or random access file in the memory must be opened
using the OPEN command with a specified file# before file I/O operations are
possible. Use the CLOSE command to close the file after I/O operations are
complete.

When opening a sequential access file, the I/O mode must be specified, as one
of the following:

INPUT ... read data from the file
OUTPUT ... write data to the file
APPEND ... append data to an existing file

Do not specify the I/O mode when opening a random access file. If the I/O mode
is specified, the random access file is treated as a sequential access file with the
same name, so that an error occurs when I/O operations are attempted with the
GET# and PUT# commands.

Specify the file# as a positive integer between 1 and 13. The same file# cannot
be applied to more than one open file simultaneously. The file# assigned to the
file can be used instead of the filename for all I/O operations until the file is closed
with the CLOSE command.

Use the INPUT# and LINE INPUT# commands and the INPUT$ function to read
data from a sequential access file and the PRINT#, PRINT# USING, and
WRITE# command to write data to the sequential access file.

Define the file buffer with the FIELD command before 1/0O operations with a
random access file. Use the LSET and RSET commands to set data in the file
buffer and the PUT# and GET# commands to read and write data to and from the
file.

131

OPTION BASE ... Reference Section 4

OPEN(2)

CPEN

(Command)
Action

Format

Example

Description

OPTlI ON BASE

Opens the RS-232C port.

OPEN "com [RS-232C port#]: [baud rate [parity [data length [stop bits [XON
switch]]]]]” [FOR OUTPUT or INPUT] AS [#] file#

OPEN "COM " FOR QUTPUT AS #1

Opens the RS-232C channel 0 for data output.

Specify the RS-232C port# as 1 or 2, as follows:
1: channel O
2: channel 1

The default value is 1.

The OPEN command opens the RS-232C port for data 1/0. When data I/O is
complete, close the RS-232C port with the CLOSE command.

Set the baud rate, parity, data length, stop bits, and XON switch parameters to
match the specifications of the device communicated with. Refer to the following
table for details of these settings. The default value shown in the table is
automatically set if the parameter is omitted.

Parameter Setting Description Default value
Baud rate 1200 1,200 bps 9600
2400 2,400 bps
4800 4,800 bps
9600 9,600 bps
19200 19,200 bps
Parity E Even parity check N
(0] Odd parity check
N No parity check
Data length 7 Each character 7 bits 8
8 Each character 8 bits
Stop bits 1 One stop bit 1
2 Two stop hits
XON switch X XON/XOFF control enabled ---
-—- XON/XOFF control disabled
S parameter | S ON N
N OFF

OPTl1 ON BASE

(Command)
Action

Format

Example

Description

132

Declares minimum value of the array qualifier.

OPTI ON BASEoor1

OPTI ON BASE 0

Declares the minimum value of the array qualifier as 0.

The OPTION BASE command declares the minimum value of the array qualifier
asOorl.

The qualifier minimum value is automatically set to O if an array variable is
declared with the DIM command in a program containing no OPTION BASE

POINT Reference

Section 4

Pl ECES

command. The OPTION BASE command is used to set the qualifier minimum
value to 1. After setting the qualifier minimum value with the OPTION BASE
command, do not execute the OPTION BASE command again in the same
program to change the minimum value.

Pl ECES

(Function)
Action

Format

Example

Description

Pl N

Extracts partial character strings divided by the delimiter characters from the
specified character string.

Pl ECE$ (character string, delimiter character string [, start# [, end#]])
A$=P| ECE$(" F300 OWL",” ", 2)

Assigns the second partial character string “OVL” from the character string
“F300 OVL" to variable A$.

The PIECES$ function returns the partial character strings between the specified
start# and end # divided by the delimiter characters from the specified character
string.

If the end# is omitted, the single partial string corresponding to the start# is re-
turned. The first partial character string is returned if both the start# and end# are
omitted. The entire character string is returned if it is not divided by the specified
delimiter character.

Port I N

(Function)
Action

Format

Example

Description

PO NT

Reads the bit status of a specified bit of the Terminal Block Unit or Parallel I/O
Unit input port.

Pl N (bit address)

A=PI N(12)

Assigns the bit status of bit 12 of the Terminal Block Unit or Parallel I/O Unit input
port to variable A.

The PIN function reads the bit status of the Terminal Block Unit or Parallel 1/0
Unit input port bit specified with the bit address parameter. The function returns a
value, as follows:

1: bit status ON

2: bit status OFF

If both Terminal Block Units and Parallel /O Units are connected, the PIN
function does not differentiate between the two. The bit status can be specified
up to the total number of input bits for all units.

Bit address 0 is the lowest terminal number of the lowest numbered slot.

PO NT

(Function)
Action

Format

Example

Determines the density of the specified coordinates in VRAM.
PO NT (X, Y, VRAM [, page#])

G=POl NT(128, 255, 3, 0)
Assigns the density at image memory coordinates (128, 255) to variable G.

133

POLYLINE Reference Section 4

Description The POINT function reads the density at the specified coordinates (X, Y) in the
specified VRAM.

Specify the VRAM with the VRAM parameter, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

The function returns either 0 or 1 if a plane VRAM is specified or a value between
0 and 255 if a frame VRAM is specified.

Omit the page# or set to 0.

POLYGON POL YGON

(Command)

Action Draws a polygon in VRAM.

Format POL YGON number of data, X array, Y array, VRAM [, [page#] [, [drawing den-
sity or drawing mode] [, lineart]]]

Example POLYGON 28, XD, YD, 3,,128,0
Draws a polygon with drawing density 128 in image memory with the points at
the coordinates defined in the arrays XD and YD with 28 data items.

Description The POLYGON command draws a polygon with points at the coordinates in the

X array and Y array from the start of the array to the number of points specified
with the number of data parameter.

Specify the number of data as a value up to 64.
Specify the VRAM where the polygon is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the page# or set to O.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : 0 written to memory

1: 1 written to memory

POLYLI NE POLYLI NE

(Command)
Action Draws a polyline in VRAM.
Format POLYLI NE number of data, X array, Y array, VRAM [, [page#] [, [drawing
density or drawing mode]]]
Example POLYLI NE 28, XD, YD, 2,,128

Draws a polyline with drawing density 128 in window memory plane 7 with the
points at the coordinates defined in the arrays XD and YD with 28 data items.

134

PRINT Reference

Section 4

Description The POLYLINE command draws a polyline with points at the coordinates in the
X array and Y array from the start of the array to the number of points specified
with the number of data parameter.
Specify the number of data as a value up to 64.
Specify the VRAM where the polyline is drawn with a number, as follows:
0: Character memory
1: Graphic memory
2: Window memory
3: Image memory
4: Shading memory
Omit the page# or set to 0.
Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.
When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.
POS POSI ti on
(Function)
Action Determines the current cursor column position.
Format PGS (numeric expression)
Example HPY%=PCS(0)
Assigns the current cursor column position (0 to 63) to the variable HP%.
Description The POS function determines the position of the character cursor in the X
direction (along the line).
The parameter of the POS function is a dummy. It has no special significance,
but cannot be omitted. Normally, set the dummy parameter to O.
Use the CSRLIN function to determine the line where the cursor is positioned.
POUT Port OUT
(Command)
Action Controls the bit status of a specified bit of the Terminal Block Unit or Parallel I/O
Unit output port.
Format POUT bit address, 0 or 1
Example POQUT 2,1
Turns ON bit 2 of the Terminal Block Unit or Parallel I/O Unit output port.
Description The POUT function controls the bit status of the Terminal Block Unit or Parallel

PRI NT

I/0 Unit output port bit specified with the bit address parameter.

If both Terminal Block Units and Parallel I/O Units are connected, the POUT
function does not differentiate between the two. The bit status can be specified
up to the total number of input bits for all units. Specify the bit address of the bit to
control as a value between 0 and (maximum bit address — 1).

Bit address 0 is the lowest terminal number of the lowest numbered slot.

PRI NT

(Command)
Action

Format

Example

Displays data on the text display.
PRI NT [expression] [; or , [expression]..] [; or]

PRI NT A$, B$

Displays the character data defined by the character expressions A$ and B$
sequentially on the text display.

135

PRINT USING ... Reference Section 4

Description

PRI NT US| NG

The expression parameter can be specified as a character expression or a
numeric expression.

Delimit multiple expressions by commas (,) or semicolons (;). The display
depends on the delimiter character used, as follows:

Comma (,)

14 characters are automatically allocated for each expression. An expression
less than 14 characters in length is separated from the next expression by
blanks.

Semicolon (;

The expressions are displayed closed together. No fixed data length is allocated
to the expressions. Numeric data is displayed preceded by a space for the sign
and followed by a blank delimiter character.

Character returns are added automatically under the conditions described be-
low.

Only a character return is displayed if all expression parameters are omitted. If
no semicolon (;) is included after the final expression parameter, the character
return is added after all the expressions are displayed. If a semicolon (;) is
included after the final expression parameter, no character return is added after
all the expressions are displayed and the first expression specified with a
subsequent PRINT command is displayed consecutively.

A character return is added if the number of spaces remaining in the displayed
line is less than the number of characters in the specified expression. Character
data is displayed in the spaces remaining in the displayed line.

PRI NT US| NG

(Command)

Action

Format

Example

Description

136

Displays formatted data on the text display.

PRI NT USI NG format control character string ; expression [{; or ,}
expression ...] [; or]

PRINT USING "& &###"; A$, B

Displays the character data and numeric data defined by the character
expression A$ and numeric data B sequentially on the text display, with 4
characters for A$ and 3 characters for B.

Specify the format control character string in double quotations (”). The specified
characters themselves are not displayed on the text display. The specified for-
mat control character string determines the number of characters and format in
the display of the expressions.

Specify the character string defining character data or numeric string defining
numeric data with the expression parameters.

Delimit multiple expressions by commas (,) or semicolons (;). The delimiter
character used does not affect the display.

The format control character string may contain two types of characters: one
type to control the display of character data and the other type to control the
display of numeric data. The specified format control character string characters
must match the type of data displayed. The control characters are described in
the following tables.

PRINT #... Reference Section 4

Format Control

Character Strings for Displaying Character Data

Character

Description

Display only the first character of the character string.

&(n blanks)&

The number of characters displayed is defined by the number of blanks (n) contained between the
ampersands (&). A total of (n+2) characters is displayed from the start of the character string. The
remaining characters are ignored if the character string contains more than (n+2) characters. The
remaining character spaces are filled with blanks if the character string contains less than (n+2)
characters.

@

Display the character string unchanged.

The character following the underscore character is not only a format control character and is printed.

Format Control

Character Strings for Displaying Numeric Data

Character

Description

The number of # characters specifies the number of numeric data digits, including the +/— sign. If the
specified number of characters is less than the number of numeric characters, the displayed data is
right justified with blanks to the left.

Insert the decimal point (.) in combination with the # characters to specify the decimal position.
Redundant decimal places are filled with zeros.

Specify the + sign as a prefix or suffix of the format control character string to print the + sign before
or after the numeric data. If two or more + signs are specified consecutively, the second (and
subsequent) + sign is considered to be outside the format control character string.

Specify the — sign as a suffix of the format control character string, the minus sign for negative
numeric data is output to the right of the number (i.e., after the number) If two or more — signs are
specified consecutively, the second (and subsequent) — sign is considered to be outside the format
control character string.

*%

Specify two or more asterisks (*) at the start of the format control character string to output asterisks
instead of blanks to the left of the numeric data. The asterisks (*) fill all blanks in the specified number
of characters.

Specify two or more yen signs (¥) at the start of the format control character string to output a yen
sign in the blank space to the left of the numeric data. The two yen signs (¥) occupy two character
spaces and one of these is used to print the yen sign.

**¥

Specify two or more asterisks (*) plus a single yen sign (¥) at the start of the format control character
string to output asterisks instead of blanks to the left of the numeric data and a yen sign in the blank
space immediately to the left of the numeric data. The two asterisks (*) and the yen sign (¥) occupy
three character spaces and one of these is used to print the yen sign.

Use a comma (,) in combination with the # number characters to delimit each 3 digits of the integer
portion of the number. If the comma (,) is specified to the right of the decimal point (.), the comma (,) is
output after the numeric data.

N ANNANN

Specify four carets (*) after the # number characters to output the number in exponential format.

The character following the underscore character is not only a format control character and is printed.

PRI NT #

A non-control character in the format control character string is displayed before
or after the character or numeric data.

A percent sign (%) is displayed in front of the numeric data if the digits of the
numeric data format specified with the expression parameters exceed the size
of the region specified by the format control characters.

PRI NT #

(Command)
Action Writes data to a sequential access file.
Format PRI NT# file# [, expression[{ ; or ,} expression ...]] [; or ,]
Example PRI NT #1, A$, B$

Organizes the character data defined by the character expressions A$ and B$
into sequential data in the order A$, B$, and writes the data to file#1.

137

PSET Reference

Section 4

Description

PRI NT# USI NG

Specify the file# as the number in which the sequential access file was opened
for output with the OPEN statement. After writing to the sequential access file is
complete, the file must be closed with the CLOSE statement.

Except for the fact that the PRINT# command writes data to a file instead of
displaying data on the screen, the command is identical to the PRINT command.
Refer to the PRINT command for information on specifying the expressions, on
the meaning of the delimiter characters, and on the rules covering the carriage
return characters.

PRI NT# USI NG

(Command)

PSET

Action

Format

Example

Description

Writes formatted data to a sequential access file.

PRI NT file#, USI NG format control character string ; expression [{; or ,}
expression ...] [; or]

PRI NT #1, USI NG " & &###"; AS, B

Organizes the data defined by the character expression A$, formatted as 4
characters, and the numeric data B, formatted as 3 characters, into sequential
data in the order A$, B, and writes the data to file#1.

Specify the file# as the number in which the sequential access file was opened
for output with the OPEN statement. After writing to the sequential access file is
complete, the file must be closed with the CLOSE statement.

Except for the fact that the PRINT# USING command writes data to a file instead
of displaying data on the screen, the command is identical to the PRINT USING
command. Refer to the PRINT USING command for information on specifying
the format control character string and expressions, on the meaning of the
delimiter characters, and on the rules covering the carriage return characters.

Poi nt SET

(Command)

138

Action

Format

Example

Description

Draws a point in VRAM.

PSET X, Y, VRAM [, [page#] [, drawing density or drawing model]]

PSET 100, 300, 2, , 128

Draws a point with drawing density 128 in the window memory at coordinates
(100, 300).

The PSET command draws a point at the specified coordinates.
Specify the VRAM where the point is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the page# or set to O.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

The drawing density parameter specifies the density between 0 and 255 when
drawing to the window, image, or shading memory. The default value is 255. The
drawing density parameter has the following effect when set for the character or
graphic memory:

0 : O written to memory

1: 1 written to memory

PUT @ Ref

erence

Section 4

PUT #

The drawing mode settings operate as follows:

OR: The current contents of the image memory ORed with 255 are written
to memory.

NOT: 0 is written to memory
XOR: The current contents of the image memory are inverted.

The default value for the drawing mode is OR.

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

PUT #

(Command)

PUT@

Action

Format

Example

Description

Writes data from the file buffer to a random access file.

PUT # file# [, numeric expression]

PUT #1,8

Writes data from the file buffer to the #8 record in the random access file opened
as file #1.

The PUT# command writes the data stored in the file buffer to the random
access file specified with the file#.

Specify the file# as the number in which the random access file was opened with
the OPEN statement.

Specify the number of the record to be written to the file with the numeric expres-
sion. If omitted, the record after the record# used with the previous GET# or
PUT# command is read.

PUT@

(Command)

Action

Format

Example

Description

Draws the array variable data stored in the image memory to VRAM.

PUT@X, v, array name, VRAM [, [page#] [, plane#]]

PUT@ 100, 300, A, 2

Draws the contents of the array A to a rectangular region of the window memory
with top-left coordinates (100, 300).

The PUT@ command draws (overwrites) data from the specified array to a
rectangular area with the top-left coordinates (X, Y).

Specify the VRAM where the data is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the page# or set to O.

Specify the plane number if a frame VRAM is specified with the VRAM
parameter (2 to 4).

If a frame VRAM is specified, the contents of planes write protected with the
MASKBIT command remain unchanged.

139

READ Reference

Section 4

RANDOM ZE

RANDOM ZE

(Command)
Action

Format

Example

Description

RDATA

Initializes random number generation.

RANDOM ZE [numeric expression]

RANDOM ZE 10
Sets the seed value to initialize random number generation to 10.
The RANDOMIZE command sets a new seed value to initialize random number

generation. The RANDOMIZE command only initializes random number
generation; use the RND function to generate random numbers.

Specify the seed value with the numeric expression between —32768 to 32767. If
the numeric expression is omitted, a message is displayed and the system waits
for a seed value between —32768 to 32767 to be input from the keyboard.

Runl engt h DATA

(Function)
Action

Format

Example

Description

READ

Reads the detailed run length data.

RDATA (XY coordinate, run#, measured data)

N=RDATA(0, 2, 2)

Assigns the edge start coordinate of the #2 run at XY coordinate position 0.
The RDATA command reads measurement data based on the detailed run
length data obtained with the MEASURE command.

Specify the coordinates where the run data (line length) is to be read. Set the Y
coordinate if the RMODE measuring direction was set to the X direction, or set
the X coordinate if the measuring direction was set to the Y direction.

Specify the number of the run data to be read at the specified XY coordinate
position with the run# parameter. The function returns O if the specified run#
exceeds the number of existing runs. The run# starts from 0.

Specify the type of data to be read from the specified run with the measured data
parameter, as follows:

0: Number of runs 1: Run length
2: Edge coordinate (start point)
3: Edge coordinate (end point)

The run# is ignored if the measure data is set to 0.

READ

(Command)
Action

Format

Example

Description

140

Reads data defined with the DATA statement to a variable.

READ variable [, variable...]

READ A B
Reads data to the numeric variables A and B.
The READ command reads the data defined with the DATA statement to

sequentially specified variables. Consequently, the READ command must be
used with the DATA statement.

Specify the variables separated by commas (,). The format of the variables must
match the format specified with the DATA statement.

REPLACE . Reference

Section 4

REM

If the number of variables specified for the READ command is less than the
number specified for the DATA statement, the remaining data is read by the next
READ command. The remaining data is ignored if no further READ command is
specified. The number of variables specified to be read must not exceed the
number specified with the DATA statement. Take care when programming
successive READ commands.

Execute the RESTORE command before the READ command to specify the line
containing the DATA statement to read. If no RESTORE command is used
before the READ command, the READ command reads the next data after the
previously read data (if any), otherwise it reads the data specified with the first
DATA statement in the program. Therefore , it is possible for READ commands
on different lines of the program to read the same data several times.

REMar k

(Command)
Action

Format
Example

Description

RENUM

Inserts remarks into the program.

{REMor , yremark
REM PROGRAM NAME PROGRAMD1 or ' PROGRAM NAME PROGRAMD1

The REM statement is non-executable and has not effect on the operation of the
program.

It is used to insert remarks and explanations into the program text.
A single-quotation mark (') can be used instead of the REM statement.

All characters and symbols specified as the parameter are handled as a remark.
Commands and functions included in the remark are not executed. A colon (%) is
also considered as part of the remark and cannot be used to continue the line
onto the next line.

RENUMber

(Command)
Action

Format

Example

Description

REPLACE

Renumbers the lines in all or part of the program.

RENUM[neW line#] [, [old line#] [, increment]]

RENUM 1000, 100
Renumbers the current line 100 as line 1000 and renumbers all subsequent
lines to the end of the program in increments of 10.

The RENUM command renumbers the old line# as the new line# and renumbers
all subsequent lines to the end of the program by the specified increment. The
default value for the increment is 10.

The program is renumbered from the first line if the old line# is omitted. The
default value of the new line# is 10.

REPLACE

(Command)
Action

Format

Example

Searches for the specified old character string between line# 1 and line# 2 and
replaces the it with the new character string.

REPL ACE old character string, new character string [, [line# 1 or label 1]
[{line# 2 or label 2]]]

REPLACE " FALSE",” TRUE", 50-100
Replaces the word “FALSE” with “TRUE” between lines 50 and 100.

141

RETURN .. Reference

Section 4

Description

RESTORE

The REPLACE command replaces the old character string with the new charac-
ter string between line# 1 (or label 1) and line# 2 (or label 2) and replaces the it
with the new character string.

The search and replace operation starts from the first line of the program if the
line# 1 (or label 1) parameter is omitted. The search and replace operation
continues to the last line of the program if the line# 2 (or label 2) parameter is
omitted.

RESTORE

(Command)
Action

Format

Example

Description

RESUME

Specifies the line with the DATA statement to be read by the READ command.

RESTORE [line# or label]

RESTORE 150

Specify the DATA command in line 150 to be read by the READ command.
The RESTORE command specifies the DATA statement to be read by a
subsequent READ command with a line# or label. If a line# is specified, the

DATA statement in the specified line is read by the READ command. If a label is
specified, the DATA statement declared after the label is read.

If the line# and label are omitted, subsequent READ commands read the DATA
statement on the line with the smallest line number.

RESUME

(Command)
Action

Format

Example

Description

RETURN

Ends an error processing routine and restarts the operation before the error oc-
curred.

RESUME [line# or label or 0 or NEXT]
RESUME 1500

Return operation to line 1500.

The RESUME command ends an error processing routine and returns operation
to the position where the error occurred. The RESUME command must be
executed within an error processing routine.

The line# or label specifies the jump destination after the error processing
routine execution is complete. Normally, a line# or label would be specified to
repeat the series of processes which led to the error. If the line# and label are
omitted or if O is specified, operation returns to the statement where the error
occurred.

If NEXT is specified, operation returns to the statement after the statement where
the error occurred.

RETURN

(Command)
Action

Format

Example

142

Ends a subroutine and returns operation to the position where the subroutine
was called or to a specified line.

RETURN [line# or label]

RETURN
Returns operation to the line after the line where the subroutine was called.

RMDIR ... Reference

Section 4

Description

R GHTS

The RETURN command ends a subroutine and returns operation to the position
where the subroutine was called (the line after the GOSUB command) or to a
specified line.

More than one RETURN command can be contained in a single subroutine.

The line# or label can be specified to force operation to jump to the specified
position. The specified line# or label must be identical to the label called with the
original GOSUB command. Correct operation cannot be guaranteed if the
specified line# or label differs from the label specified with the GOSUB com-
mand, due to the loss of the correlation between the GOSUB and RETURN com-
mands. Take care when executing a GOSUB command inside a FOR-NEXT
loop if GOSUB commands are nested.

Rl GATS

(Function)
Action

Format

Example

Description

RVDI R

Extracts a character string with the specified length from the right end of the
specified character string.

Rl GHT$ (character string, character string length)
B$=RI GHT$(” F300- OVL" , 3)

Extracts 3 characters from the right end of character string “F300-OVL” and
assigns them to variable B$.

Extracts a character string of any length from the end of the specified character
string.

The character string can be specified as a character constant or character vari-
able. A null string (" ") cannot be specified.

Specify the length of the extracted character string in bytes with the character
string length parameter as a value between 1 and the length of the character
string. A null string is returned if 0 is specified for the character string length. The
entire specified character string is returned if the character string length is
greater than the length of the specified character string.

ReMove DI Rectory

(Command)
Action

Format

Example

Description

Deletes a directory from the memory card.

RNVDI Rdirectory name

RMDI R " BASI C’

Deletes the directory named BASIC from the current directory.

Specify the directory name as the name of a directory in the memory card with a
character string. An error occurs if the specified directory does not exist.

The directory specified with the directory name cannot be deleted if it contains
files. The files in the directory must be deleted with the KILL command before
using the RMDIR command.

Do not specify the current directory as the directory name parameter for the
RMDIR command. To delete the current directory, first use the CHDIR command
to change the current directory to another directory (normally one directory up
the hierarchy) before using the RMDIR command.

143

RND Reference

Section 4

RMODE

Runl engt h MODE

(Command)

RND

Action

Format

Example

Description

Sets the measurement mode for detailed run length data.

RMCDE binary image plane#, measured pixels [, [window function] [,
[direction] [, [noise] [, image cutout]]]]

RMODE 3,0,1,0

Sets measurement of black pixels for binary image plane 3, with the window
function on, X-direction measurement, no noise filtering, and image cutout
turned off.

The RMODE command sets the conditions for measurement of the detailed
runlength with the MEASURE command. Specify the binary image plane for
which the measurement conditions are set with the binary image plane# param-
eter.

Set the measured pixels parameter to set which pixels to measure, as follows:

0: Black pixels
1: White pixels

Set the window function to specify measurement in the window, as follows:

0: Measure the whole screen.
1: Measure in window only

Set the direction parameter to specify the measurement direction of the detailed
run length data, as follows:

0: X direction
1: Y direction

The default value is 0.

Measurement must be made in the X direction before measuring in the Y
direction.

Set the noise parameter to specify a number of pixels between 0 and 3 to ignore
as noise. This number or less of consecutive pixels is not considered as run
length data.

Set the image cutout to 1 to recognize all parts outside the window as part of the
run.

The RMODE command must be executed before the MEASURE command.

RaNDom

(Function)

144

Action

Format

Example

Generates a random number between 0 and 1.

RND [(numeric expression)]

A=RND(1)

Assigns the next random number in the current random number sequence to
variable A%.

RUN Reference

Section 4

Description Returns a random number between 0 and 1. The random number is generated
with 1 as the random number seed until the seed is changed with the
RANDOMIZE command.
The returned random number depends on the specified numeric expression.
The meaning of the specified numeric expression is described in the table below.
Value Description

Negative value

Returns the first random number from the current random number sequence.

0

Returns the previous random number in the current random number sequence.

Positive value or omitted

Returns the next random number in the current random number sequence.

RSET

R ght SET

(Command)
Action

Format

Example

Description

RTRI Mb

Writes right-justified character data to a variable area defined with the FIELD
command.

RSET character variable = character string

RSET A$="BASI C’

Right justifies the character string “BASIC” and writes it to the variable area
defined with the variable name AS.

Specify a character variable name defined with the FIELD command with the
character variable parameter.

Specify a character constant or character variable as the character string.
Excess characters are lost from the left of the character string if the length of the
specified character string exceeds the length of the character variable defined
with the FIELD command. Conversely, if the length of the specified character
string is less than the length of the character variable, the remaining positions
are filled with blanks.

Right TRI M

(Function)
Action

Format
Example

Description

RUN

Deletes spaces to the right of a character string.

RTRI Mb (character string)

A$=RTRI M5(" JAPAN ")
Assigns “JAPAN" to variable A$.

Returns the character string (1- or 2-byte characters) with the spaces removed
from the right.

RUN

(Command)
Action

Format

Example

Description

Runs a program.

Format 1: RUN [line#]

Format 2: filename [, R]

RUN ” PROL”

Load and execute the program PRO1 on the memory card.

The command in Format 1 runs the program from the specified line#. The
program runs from the first line if the line# is omitted.

The command in Format 1 loads the program with the specified filename from
the memory card and runs if from the first line. If the R option is specified, files
previously opened for I/O are kept open.

The RUN signal turns ON when the RUN command is executed.

145

SBANK ... Reference

Section 4

RUNL

RUN Lengt h

(Function)

Action Reads the simple run length data.

Format RUNL (binary plane#, Y coordinate, measured data)

Example L=RUNL(2, 128, 0)

Assigns the simple runlength data from Y coordinate 128 of the binary image
plane 2 to variable L.

Description The RUNL command reads the simple run length data obtained for each binary
image plane with the MMODE command run function parameter set to 1. Set the
number of the binary image plane for which the data is required with the binary
plane# parameter.

Specify the Y coordinate of the run data to be read with the Y coordinate
parameter.
Specify the type of data to be read with the measure data parameter, as follows:
0: Run length
1: Start X coordinate
2: End X coordinate
3: Error data (The function returns —1 if more than one run exists.)
Set the MMODE command run function parameter set to 1 before using the
RUNL function.
(Command)

Action Saves an OVL program from memory to the memory card.

Format SAVE filename [, P]

Example SAVE " MYPROG'

Save the OVL program in memory with the filename MYPROG.BAS.

Description The SAVE command saves a program in memory in ASCII format to the file

SBANK

specified with the filename in the memory card or RS-232C port. If the name of
an existing file is specified as the filename, the old contents of the file are de-
leted.

The file is coded if the P option is specified.

An error (lllegal function call) occurs if the LOAD, LIST, or EDIT command is
executed on a file saved using the P option. An error (Access denied) also oc-
curs if the OPEN command is executed on a file saved using the P option.

Shadi ng nenory BANK

(Command)
Action

Format

Example

146

Selects the shading memory bank number.

SBANK (bank#)
SBANK 0

Switches to shading memory bank 0.

SCANSET . Reference

Section 4

The SBANK command switches to the shading memory bank 0 or 1 specified
with the bank#.

SCAN

Description
(Command)

Action

Format

Example

Description

SCANSET

Conducts scan measurement of a binary image.

SCAN VRAM, [page#], [plane#], measured pixels [, [window function] [,
[NO SE], [, [X-coordinate compensation] [, [Y-coordinate compensation]]]]

SCAN 3,,5,0,0,, 20,-15

Sets measurement of black pixels for binary image plane 5, with the window
function on, no noise filtering, +20 X coordinate compensation, and —15 Y
coordinate compensation.

The SCAN command conducts scan measurement of a binary image under the
conditions specified by the SCANSET command. Read the measured results
using the SDATAL and SDATAZ functions.

Specify the VRAM to be scanned with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the page# or set to 0.

The planet is ignored if a plane VRAM is specified, but the plane# must be setif a
frame VRAM is specified.

Set the measured pixels parameter to 0 to measure black pixels or 1 to measure
white pixels.

Set the window function to 1 scan the specified region of the image or to 0 to scan
the entire screen. The default value is 1.

Set the noise parameter to specify a number of pixels between 0 and 3 to ignore
as noise. This number or less of consecutive pixels is not considered as scan
data. The default value is 0.

Specify the X-coordinate compensation or Y-coordinate compensation
parameter to a displacement offset value between —256 and 255. The default
value is 0.

SCANSET

(Command)
Action

Format

Example

Description

Sets the conditions for scan measurement.

SCANSET shape, number of array data elements, X array, Y array

SCANSET 0, 2, X, Y
Sets scan measurement around an ellipse.

The SCANSET commands sets the conditions for scan measurement.

Specify the shape of the series of pixels to be scanned with the shape
parameter, as follows:

0: Ellipse (including circle)

1: Polygonal line

2: Polygon

147

SCNLEVEL Reference

Section 4

SCNCALI| B

Define the scanned shape with the parameter arrays X array and Y array.
For an ellipse, specify the center coordinates and the X and Y half axes.

Y coordinate of center
Y axis half axis

X array (0): X coordinate of center Y array (0):
X array (1): X axis half axis Y array (1):

For non-ellipse shapes, specify X and Y coordinate series.

X array (0): X coordinate of point O Y array (0): Y coordinate of point 0
X array (1): X coordinate of point 1 Y array (1): Y coordinate of point 1
X array (2): X coordinate of point 2 Y array (2): Y coordinate of point 2
to

X array (n): X coordinate of point n

Specify the qualifier (i.e., the number of data elements) in X array and Y array.

SCeNe CALI Bration

Y array (n): Y coordinate of point n

(Command)
Action

Format

Example

Description

SCNCAM

Specifies the scene and camera# used for the measured value calibration data.

SCNCALI B scene#, camera#

SCNCALI B 0, 3

Sets the scene 0, camera 3 data as the calibration data used to calculate the
calibrated data read with the MDATA function.
Specifies the camera# to be calibrated.

The SCNCALIB command sets the scene specified by the scene# and the
camera specified by the camera# as the data used for measurement calibration.

The SCNCALIB command is used to specify the scene calibration data set from
the menu mode, when calibrated data is read with the MDATA function.

Both the scene# and camera# are set to 0 when OVL is booted up.

SCeNe CAMer a

(Function)
Action

Format

Example

Description

SCNLEVEL

Reads the camera setting data for the specified scene and binary image plane#.

SCNCAM (scene#, binary image plane#, data type)

L=SCNCAM 3, 4, 0)

Assigns the camera number of scene 3, binary plane 4, to variable L.

The SCNCAM function reads the camera setting data for the binary image plane
specified by the binary image plane# in the scene specified by the scene#.

Specify the type of data to read with the data type parameter using a number, as
follows:

0: Camera number
1: Camera magnification
2: Camera angle in degrees

SCeNe LEVEL

(Function)
Action

Format

Example

148

Determines the binary level data for a binary image plane of a specified scene.

SCNLEVEL (scene#, binary image plane#, data type)

L=SCNLEVEL(3, 4, 0)
Assigns the binary level (lower limit) of scene 3, binary plane 4, to variable L.

SDATA1l ... Reference

Section 4

Description

SCNLOAD

The SCNLEVEL function reads the binary level data for the binary image plane
specified by the binary image plane# in the scene specified by the scene#.

Specify the type of binary level data to read with the data type parameter using a
number, as follows:

0: Binary level (lower limit)
1: Binary level (upper limit)

SCeNe LOAD

(Command)
Action

Format

Example

Description

SCNLUT

Loads the scene measuring condition from a file.

SCNLQADfile name , scene#

SCNLOAD "file”
Load the data from the file named “ file” in the memory card as the scene data for
scene 0.

The SCNLOAD command loads the data from the file specified with the file
name parameter as scene data and stores it as the measuring conditions for the
scene specified by the scene#.

Scene data can be loaded with the SCNLOAD function only from a file saved
with the SCNSAVE command or saved in the menu mode.

SCeNe LUT

(Command)
Action

Format

Example

Description

SCNSAVE

Sets the hinary level of all binary planes in the specified scene to the binary LUT.

SCNLUT scene#

SCNLUT 6
Sets the binary level of all binary planes in the scene #6 to the binary LUT.

The SCNLUT command batch sets the binary level of all binary planes in the
scene specified with the scene# to the binary LUT.

SCeNe SAVE

(Command)
Action

Format

Example

Description

SDATA1

Saves the scene measuring condition data to a file.

SCNSAVE file name, scene#

SCNSAVE "file”, 0
Saves the scene data for scene 0 to the file named “ file” in the memory card.

The SCNSAVE command saves the scene data specified with the scene#
parameter to the file specified by the file name.

Scan DATAl

(Function)
Action

Format

Example

Reads the scan measurement data statistics.

SDATAL (data type)

ED=SDATAL(2)

Assigns the maximum scan length measured by the SCAN command to variable
ED.

149

SEARCH .. Reference

Section 4

Description

SDATAZ?

The SDATAL function reads the scan measurement data statistics measured
with the SCAN command. All values are returned in units of pixels.

Specify the statistic required with the data type parameter using one of the
following numbers:

: Number of scans

: Average scan length

: Maximum scan length

: Minimum scan length

: Median scan length

: Scan number with the maximum length
: Scan number with the minimum length
: Scan number with the median length

No o WNREO

Scan DATA2

(Function)
Action

Format

Example

Description

SEARCH

Reads the individual scan data measurement items.

SDATAZ2 (scan#, data type)

ED=SDATA2(2, 2)
Assigns the start point Y coordinate to variable ED.

The SDATAZ2 function reads the individual scan data measurement items of the
specified scan# measured with the SCAN command. All values are returned in
units of pixels.

Specify the date item.

: Scan length

: Start point X coordinate

: Start point Y coordinate

: End point X coordinate

: End point Y coordinate

: Length from scan origin to start point
: Length from scan origin to end point

O, WNEFO

SEARCH

(Function)
Action

Format

Example

Description

150

Searches for an integer in an integer array and determines the number of the
array element where the integer is found.

SEARCH (integer array name, value to find [, [start element#] [, increment]])

SY%=SEARCH(TE% 60)

Searches for the integer 60 in the integer array (100) and assigns the number of
the first element where the integer 60 is stored to variable S%.

The SEARCH function finds the specified value in the integer array and returns
the the number of the array element where the value is found as an integer. -1 is
returned if the specified value is not found in the array.

Specify the integer array name as the name of an array variable defined as a
one-dimensional array with the DIM command. Only one-dimensional array
variables may be specified.

Specify the integer to be found with the value to find parameter. To find a single-
or double-precision integer value, first convert the value to an integer.

Specify the number of array element to start the search with the start element#
parameter. Specify any value between the minimum and maximum qualifier val-

SET Reference

Section 4

ue. The search starts from the start of the array variable if this parameter is
omitted. The minimum qualifier value is declared with the OPTION BASE com-
mand.

Specify the increment as a positive integer. The increment sets the counter
between the searched array elements. The increment is added to the number of
a searched element to determine the number of the next element to search. In-
termediate elements are not searched. The default value is 1 if the parameter is
omitted and all elements after the start element# are searched.

SELECT. . . CASE-CASE ELSE-END SELECT

SELECT. . . CASE-CASE EL SE-END SELECT

(Command)

SET

Action

Format

Example

Description

Provides multiple branching depending on the result of a conditional expression.
SELECT expression

[CASE item [, item..]
Statement in CASE block

CASE ELSE
Statement in CASE ELSE block]

END SELECT

SELECT A
CASE 0

PRI NT " ZERO'
CASE 1,3,5,9

PRI NT " ODD”
CASE 2,4, 6, 8,

PRI NT " EVEN'’
END SELECT

Branches program execution depending on the value of variable A.

The SELECT command branches program execution depending on the value of
the specified expression.

The expression can be defined as a numeric or character expression. The pro-
gram branches as defined when the value of the expression matches the speci-
fied CASE value.

Multiple CASE statements may be defined. The CASE and CASE ELSE state-
ment may be omitted.

The END SELECT statement is required; it must not be omitted.

If more than one CASE statement matches the result of the expression, the first
of the CASE statements is executed.

Do not use the GOTO command to jump into or out of the SELECT block.

SET

(Command)

Action

Format

Example

Sets the write-protect attribute for a file.

SET filename or file#, attribute character

SET "FILE", "P"
Write protect the file named FILE.

SET #1, " "
Write enable file #1.

151

SETDLUT . Reference

Section 4

Description

Sets the write-protect attribute (write protect or write enable) with the attribute
character for the file specified with the filename or file#. The attribute is applied to
the specified file only. Other files in the memory card remain unchanged.

Specify the filename parameter as the name of an existing file with a character
string. After the write-protect attribute is set for a file specified with a filename it
remains unchanged until cancelled with the SET command.

Specify the file# as the number in which the file was opened with the OPEN com-
mand. This attribute is maintained only while the file is open.

Specify the attribute character as either P or a null string or single space. Other
characters cause an error. The key to the attribute characters is shown in the
table below.

Attribute character

Attribute setting

“p” Writing disabled to the file specified with the filename of file#. No data output to the file with file
output commands (PRINT#/PUT#WRITE#).

Null string or single Cancels write protection for the file specified with the filename of file# to enable data to be
space written to the file.

SETBLUT

SET Binary LUT

(Command)
Action

Format

Example

Description

SETDLUT

Sets array data as binary LUT data.

SETBLUT binary image plane#, array name [, [qualifier] [, size]]

SETBLUT 2, A

Set the 256 array elements from the start of array A as binary LUT.

The SETBLUT command sets the array specified by the array name as the
binary LUT data for the specified binary image plane#.

The qualifier specifies the first array element to be set as the binary LUT data.
The default value is 0.

The size parameter specifies the number of array elements, as follows:

0: 256
1:512

The default value is 0.

The array data corresponds to the binary LUT data, as follows:

0: 0 set to the LUT
non-0: 1 setto the LUT

SET Display LUT

(Command)
Action

Format

Example

Description

152

Sets an array variable in the display LUT.

SETDLUT region, array hame, [, qualifier]

SETDLUT 1, A

Sets 256 elements of array A as the display LUT for inside the window.

The SETDLUT command sets the values in the array variable specified by the
array name as the display LUT data.

Separate display LUTs are provided for inside and outside the window. Specify
the display LUT for inside or outside the window with the region, parameter. En-
ter 0 to set the display LUT for outside the window or 1 for inside the window.

SFTBLUT . Reference

Section 4

SETDLVL

The qualifier specifies the first array element to be set as the display LUT. The
default value is 0.

SET Di splay LeVelL

(Command)
Action

Format

Example

Description

SETLUT

Sets the display level for each display image.

SETDLVL image type [, gradation]

SETDLVL 1, 20
Set the graphic memory display level to 20.

The SETDLVL command sets the display brightness for the image specified with
the image type parameter.

: Character memory

: Graphic memory

: Mask image

: Binary image, white

: Binary image, black

: Window memory increment

: Paint/pattern matching window memory increment

O, WNEFO

Set the required display level with the gradation parameter. If omitted, the setting
reverts to the setting at OVL boot-up.

SET LUT

(Command)
Action

Format

Example

Description

SFTBLUT

Sets array data as the filter LUT data.

SETLUT array name, [, [qualifier] [, size]]

SETLUT A
Sets 256 elements of array A as the filter LUT.

The SETLUT command sets the array data variable specified by the array name
as the filter LUT data.

The qualifier specifies the first array element to be set as the filter LUT data. The
default value is 0.

The size parameter specifies the number of array elements, as follows:

0: 256
1:512

The default value is 0.

Shi FT Binary LUT

(Command)
Action

Format

Example

Description

Shifts the binary LUT contents for each binary image plane.

SFTBLUT binary image plane#, shift

SFTBLUT 1, -12
Shifts the binary LUT for binary image plane# 1 by —12.

The SFTBLUT command shifts the contents of the binary LUT for the specified
binary image plane# by the amount specified with the shift parameter.

The shift operation with positive and negative shift parameters is shown below.

153

SFTLUT .. Reference

Section 4

SFTLUT

Before shifting:

Output 1
image
gradation
0
—256 255
Positive shift:
Output 1
image
gradation
0
—256 255
Negative shift:
Output 1
image
gradation
0
—256 255

Input image gradation

Input image gradation

Input image gradation

Shi FT LUT

(Command)
Action

Format

Example

Description

154

Shifts the filter LUT.

SFTLUT shift
SFTLUT -12

Shifts the filter LUT by —12.

The SFTLUT command shifts the contents of the filter LUT by the amount

specified with the shift parameter.

The shift operation with positive and negative shift parameters is shown below.

Before shifting:

Output 255
image
gradation
0
-256

255

Input image gradation

SIN . Reference

Section 4

SGN

Positive shift:

Output 255
image
gradation
0
-256 0 255 Input image gradation

Negative shift:

Output 255
image

gradation

-256 0 255 Input image gradation

Si GN

(Function)
Action Determines the positive or negative sign of a numeric expression.
Format SGN (numeric expression)
Example A=SGN\(-35)
Assigns —1 to variable A to indicate that the numeric expression —35 is negative.
Description The SGN function returns a value (-1, 0, 1) to indicate the sign of the numeric
expression. The relationship between the sign of the numeric expression and
returned value is shown below.
Numeric expression Returned value
Positive
0 0
Negative -1
(Function)
Action Determines the sine of a numeric expression.
Format S| N (numeric expression)
Example A=SI N(30*3. 14159/ 180)
Assigns the sine of 305 to variable A.
Description The SIN function returns a value between —1 and +1. The numeric expression

must be set in radians. Convert an angle in degrees to radians by multiplying by
7/180.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The SIN function always returns a double-pre-
cision real number.

155

SPC Reference

Section 4

SPACES

SPACES

(Function)
Action Creates a character string comprised of the number of spaces specified by the
numeric expression.
Format SPACES$ (numeric expression)
Example A$=SPACES$(3)
Creates a character string containing 3 space characters and assigns it to
variable A$.
Description The SPACES$ function returns a character string containing the number of space
characters (CHR$(32)) specified by the numeric expression.
Specify the numeric expression as a value between 0 and 255.
The STRING$ function is similar to the SPACE$ function. In the following
examples, the STRING$ and SPACE$ functions return the same character
string.
A$=SPACE$(10) assigns 10 spaces to variable A$
A$=STRING$(10, 32) assigns 10 spaces (CHR$(32)) to variable A$
SPC SPaCe
(Function)
Action Outputs the specified number of spaces.
Format SPC (numeric expression)
Example PRI NT " OVRON'’; SPC(10) ; " F300”
"OMRON” and "F300” are displayed on the screen separated by 10 spaces.
Description The SPC function creates a character string containing the number of spaces

156

specified by the numeric expression. The SPC function cannot be used alone.
Use it together with the PRINT command.

Specify the numeric expression as an integer between —32768 (—215) and
32767 (215-1). A negative numeric expression (—21° to —1) is treated as 0. If the
designated characters do not fit in one line, the remainder obtained by dividing
the number of the designated characters by the number of characters fitting in
one line shall be used as the set value. An example is seen in the following.

512 characters

PRI NT "A”; SPC (520); "B
A B

PRINT “A"; SPC (520); “B
The number of characters in one line is 512.
520/ 512 = 1 (the remainder is 8)
The screen output is as follows:

A B (8 spaces between A and B)

SPLINE .

.. Reference

Section 4

SPCLOSE

SPli ne CLOSE

(Command)

Action

Format

Example

Description

SPLI NE

Draws a region bounded by a spline curve in VRAM.

SPCL OSE number of data, X array, Y array, VRAM, [, [page#] [, [density or
drawing mode] [, lineart]]]

SPCLOSE 28, XD, YD, 3, , 128, 0

Draws a region in image memory with drawing density 128 bounded by a spline
curve defined by the 28 coordinate points contained in arrays XD and YD.

The SPCLOSE command draws a region bounded by a spline curve. The spline
curve is defined by the coordinate points in X array and Y array between the first
array element and the element defined by the number of data parameter.

The number of data must not exceed 64.
Specify the VRAM where the region is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the page# or set to 0.

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

Specify with the lineart parameter if the spline curve is an outline only or filled.
0: Filled spline curve

1: Spline curve outline only

The default value is 0.

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

SPLI NE

(Command)

Action

Format

Example

Description

Draws a spline curve in VRAM.

SPLI NE number of data, X array, Y array, VRAM, [, [page#] [, [density or
drawing mode]

SPLI NE 28, XD, YD, 3,, 128

Draws a spline curve in image memory defined by the 28 coordinate points
contained in arrays XD and YD with drawing density 128.

The SPLINE command draws a spline curve defined by the coordinate points in
X array and Y array between the first array element and the element defined by
the number of data parameter.

The number of data must not exceed 64.
Specify the VRAM where the spline curve is drawn with a number, as follows:

0: Character memory
1: Graphic memory
2: Window memory
3: Image memory

4: Shading memory

Omit the page# or set to 0.

157

STOP Reference

Section 4

SCR

Specify the drawing method with the drawing density or the drawing mode. The
default value is drawing mode, OR.

When writing to a frame memory, the contents of planes write protected with the
MASKBIT command remain unchanged.

SQuar e Root

(Function)

Action

Format

Example

Description

SSCROLL

Determines the square-root of a numeric expression.

SQR (numeric expression)
A=SQR(100)

Assigns 10, the square root of 100, to variable A.
The SQR function determines the square-root of the specified numeric expres-
sion. The numeric expression must be 0 or a positive value.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The SQR function always returns a double-
precision real number.

Shadi ng nenory SCROLL

(Command)

STOP

Action

Format

Example

Description

Scrolls the shading master memory.

SSCROLL X, Y [, center of rotation X, center of rotation Y, angle of rotation]

SSCROLL 50, 100, 256, 256, 30

Rotates the shading master memory 30% clockwise about the coordinates (256,
256) and scrolls it 50 pixels in the X direction and 100 pixels in the Y direction.

The SSCROLL command scrolls the shading master memory in the X, Y, and 6
directions.

Specify the amount of scroll in the X direction with the X parameter and the
amount of scroll in the Y direction with the Y parameter. Specify the scroll
amounts as a number of pixels between —1024 and +1023.

Specify the amount of rotational scroll in degrees with the angle of rotation
parameter and the coordinates of the center of rotation with center of rotation X
and center of rotation Y. No rotation occurs if these parameters are omitted.
Specify the center of rotation X and center of rotation Y as a number of pixels
between —1024 and +1023.

Scrolling is completed in the order: rotation, X, Y.

STOP

(Command)

158

Action

Format

Example

Stops program execution.

STOP
| F A$="ST" THEN STOP

Stops program execution if A$ = “ST".

STR$ Reference

Section 4

STOP O\ OFF/ STOP

Description

The STOP command stops program execution. It can be used anywhere inside
the program.

STOP key ON OFF/ STOP

(Command)

STR$

Action

Format

Example

Description

STOP ON:

STOP OFF:

STOP STOP:

Disables, enables, or stops interrupts from the STOP Key.

STOP ONor OFF or STOP

STOP OFF

Disables branching to the interrupt processing routine when the STOP Key is
pressed.

The STOP command controls branching to an interrupt processing routine when
the STOP Key is pressed.

The STOP ON statement enables the interrupt processing routine when the
STOP Key is pressed. When the STOP Key is pressed, operation branches to
the interrupt processing routine at the line# or label defined with the ON STOP
GOSUB statement.

The STOP OFF statement disables the interrupt processing routine when the
STOP Key is pressed. When the STOP Key is pressed, program operation stops
but does not branch to an interrupt processing routine.

The STOP STOP statement stops interrupt processing when the STOP Key is
pressed. When the STOP Key is pressed, operation does not immediately
branch to the interrupt processing routine. However, immediately branching is
enabled by the STOP ON statement, operation branches to the interrupt
processing routine at the line# or label defined with the ON STOP GOSUB
statement.

Note that if the STOP OFF/STOP command is used the STOP Key does not
function as normal to stop program execution.

The interrupt subroutine must be defined with the ON STOP GOSUB statement
before a STOP ON/OFF/STOP command is executed.

STRi ng$

(Function)

Action

Format

Example

Description

Converts a number to character string representation.

STRS$ (numeric expression)

A$=STR$(5692)

Converts the value 5692 to a character string and assigns it to variable A$.
The STR$ function converts the numeric expression to a character string. A
numeric expression cannot be directly assigned to a character variable. First

convert the numeric expression with the STR$ function before assigning it to a
character variable.

The first character in the character string is a space if the numeric expression is
positive. The space is replaced by a minus sign if the numeric expression is neg-
ative.

The VAL function has the opposite action to the STR$S function.

159

STRMODE Reference

Section 4

STRCHK

STRobe CHecK

(Function)
Action

Format

Example

Description

STRI NG

Checks for incorrect strobe flashing.

STRCHK

D=STRCHK
Assigns the result of the strobe check to variable D.

The STRCHK function checks for incorrect strobe flashing. The function returns
a number as follows:

0: Normal strobe flash
non-0: No strobe flash or disconnected strobe cable.

The bit position corresponds to the strobe number.

STRI NG

(Function)
Action

Format

Example

Description

STRMODE

Creates a character string containing the specified number of the specified
character.

STRI NG3$ (number of characters, character string or numeric expression 2)

A$=STRI NG$(10, "*")
Assigns a character string containing 10 asterisks to variable A$.

The STRING$ function returns a character string containing the number of
specified 1-byte characters specified by the numeric expression. 2-byte
characters may not be specified.

Specify the number of characters as a value between 1 and 255.

Specify the character to fill the character string with the character string or nu-

meric expression 2 parameter.

Specifying character string:
Specify the character string as a single 1-byte character.
Only the leading character is valid if more than one character string is speci-
fied. The STRINGS function returns a character string filled with the leading
character.

Specifying numeric expression 2:
Specify the numeric expression 2 as the decimal character code for a 1-byte
character as an integer between 0 and 255.
The SPACES$ function is similar to the STRINGS$ function. In the following
examples, the STRING$ and SPACES$ functions return the same character
string.

A$=STRING$(10, 32) assigns 10 spaces (CHR$(32)) to variable A$
A$=SPACE$(10) assigns 10 spaces to variable A$

STRobe MODE

(Command)
Action

Format

Example

160

Enables and disables strobe flashing on the FLASH command.

STRMODE strobe#, switch

STRMCDE 1, 1
Strobe 1 flashes when the FLASH command is executed.

TAB Reference

Section 4

Description

SUB—-END SUB

The STRMODE command enables and disables strobe flashing when the
FLASH command is executed.

Specify the number of the strobe as a value between 0 and 7 with the strobe#
parameter. Set strobe# to —1 to specify all the strobes. The specified strobe
flashes when the FLASH command is executed if the switch parameter is set to
1. Set the switch parameter is set to 0 to disable the strobe flashing.

All strobes enabled with the STRMODE command flash simultaneously when
the FLASH command is executed.

SUB-END SUB

(Command)
Action

Format

Example

Description

SWAP

Defines a structural subroutine called by the CALL command.

SUB label (argument [, argument...])
Statement in SUB block
END SUB
SUB *SUB1(A$, B% CH#)
B$ = A$ + " OVRON
END SUB
Defines the label *SUB1 as a structural subroutine.

The block between SUB-END SUB defines the structural subroutine called by
the CALL command.

All variables used in a subroutine are treated as local variables. The variables
specified by the arguments are assigned the values of the local variables after
execution of the subroutine.

The label defines the name of the subroutine. This name is used to call the
subroutine with the CALL command.

The arguments can be specified as any type of variables, except array variables.
No logical limitation is placed on the number of arguments. However, the com-
mand line can physically accommodate up to 255 characters only.

No further SUB-END SUB command may be nested inside a subroutine block.
Statements in subprogram blocks must be located after the main program.

SWAP

(Command)
Action

Format

Example

Description

TAB

Switches two variables.

SWAP variable 1, variable 2

SWAP A#, B#
Switches the values of variables A# and B#.

The SWAP command switches the contents of variable 1 and variable 2. Both
variables must be of the same type.

TABUIl at e

(Function)
Action

Format

Example

Specifies the position to display characters.

TAB (numeric expression)

PRI NT "1234567”; TAB(10); " XYZ”

Displays “1234567" from the left-hand character position (character 0) and
“XYZ" from the character 10 position.

161

TIMES Reference Section 4
Description The TAB function moves the cursor along a line by the specified number of
characters from the left-hand position. If the character position specified by the
numeric expression is less than the current cursor position, the cursor moves to
the specified character position on the next line.
The TAB function cannot be used alone. Use it together with the PRINT com-
mand.
A negative numeric expression is treated as 0. If a positive numeric expression is
specified which exceeds the number of character in a line, the number of
characters in a line is subtracted from the specified numeric expression to
determine the cursor position.
The differences between the TAB function and the similar SPC function are
shown in the following table.
TAB function SPC function
Spaces Outputs the number of spaces determined by Outputs the number of spaces specified by the
subtracting the number of previously output numeric-expression from the current cursor
characters from the numeric expression. position.
Line feed Cursor moves to the next line if the character No line feed.
position specified by the numeric expression is less
than the current cursor position.

TAN

TANgent

(Function)

TI MES

Action

Format

Example

Description

Determines the tangent of a numeric expression.

TAN (numeric expression)

A=TAN(45*3. 14159/ 180)
Assigns the tangent of 45% to variable A.
The TAN function returns an integer between —1.701411834604692D+38 and

+1.701411834604692D+38. The numeric expression must be set in radians.
Convert an angle in degrees to radians by multiplying by ©/180.

The numeric expression may be in the form of an integer, long integer, or a single
or double-precision real number. The TAN function always returns a double-pre-
cision real number.

TI MES

(Function, Command)

162

Action

Format

Example

Description

Displays and sets the time in the internal clock.

Format 1: T1 VE$
Format 2: TI ME$="HH:MM:SS"

CLOCK$=TI ME$
Assigns the time returned in TIMES$ to the character variable CLOCKS.

Format 1

Reads the time from the F300.

TIMER Reference

Section 4

A character string in the format HH:MM:SS is returned when the TIMES$
function is executed.

HH:MM:SS

————— Seconds: 2 characters between 00 and 59
Minutes: 2 characters between 00 and 59

Hours: 2 characters between 00 and 23

The clock is set to 00:00:00 when the F300 power supply is turned on.

Format 2

Sets the F300 clock:

Set the hours between 00 and 23 with 2 characters.

Set the minutes between 00 and 59 with 2 characters.

Set the seconds between 00 and 59 with 2 characters.

The time must be in the format HH:MM:SS. No part can be omitted.

TI VE$S QY OFF/ STOP TI ME$S ON OFF/ STOP

(Command)
Action

Format

Example

Description

TIMES$ ON:

TIMES$ OFF:

TIME$ STOP:

11 MER

Disables, enables, or stops timer interrupts.

TI ME$S ONor OFF or STOP

TI ME$S ON
Enables branching to the interrupt processing routine due to the timer.

The TIME$ command controls branching to an interrupt processing routine due
to the timer.

The TIME$ ON statement enables the interrupt processing routine on timer op-
eration. When timer set with the ON TIME$ GOSUB command is reached,
operation branches to the interrupt processing routine at the line# or label
defined with the ON TIME$ GOSUB statement.

The TIME$ OFF statement disables the interrupt processing routine on timer op-
eration. All timer interrupts are ignored.

The TIME$ STOP statement stops interrupt processing on timer operation.
When the set time is reached, operation does not immediately branch to the
interrupt processing routine. However, immediately branching is enabled by the
TIMES$ ON statement, operation branches to the interrupt processing routine at
the line# or label defined with the ON TIME$ GOSUB statement.

11 MER

(Function, Command)
Action
Format

Example

Description

Reads and sets the 10 ms timer.

Format 1: T1 MER

Format 2: T1 MER = numeric expression
T&=TI MER

Assigns the 10 ms timer PV to variable T&.

Format 1

Reads the 10 ms timer PV. The timer PV is 0 when the power is turned on and
increases by 1 every 10 ms.

163

UCASE$.. Reference

Section 4

TROFF

Format 2

Sets the 10 ms timer to the value between 0 and 2147483647. specified with the
numeric expression.

TRace OFF

(Command)
Action

Format

Example

Description

TRON

Exits the Trace mode.

TROFF

TROFF
Cancels the Trace mode.

The TROFF command cancels the Trace mode.

The Trace mode is cancelled by the TROFF command only. It is not cancelled
when a program is executed, completed, interrupted, or re-executed.

TRace ON

(Command)
Action

Format

Example

Description

UBOUND

Enters the Trace mode.

TRON

TRON
Enters the Trace mode.

The TRON command enters the Trace mode.

When a program is executed in the Trace mode, the line numbers are displayed
continuously on the screen as an aid to debugging.

Displays from the program are unchanged in the Trace mode. However,
program outputs become mixed with the line numbers. The Trace mode is
cancelled by the TROFF command only. It is not cancelled when a program is
executed, completed, interrupted, or re-executed.

Upper BOUND

(Function)
Action

Format

Example

Description

UCASES$

Determines the upper boundary of an array dimension qualifier.

UBOUND (array name [, number of dimensions])
| =UBOUND(A, 1)
Assigns the upper limit of the qualifier of the 1-dimensional array A to variable I.

The UBOUND function returns the upper boundary of an array dimension
qualifier.

Specify the name of the array for which the qualifier is to be determined with the
array name parameter.

Specify the number of dimensions of the array with the number of dimensions
parameter. The default value is 1.

Upper CASE $

(Function)
Action

Format

Example

164

Converts lowercase letters in the character string to uppercase letters.

UCASES (character string)

A$=UCASES$(B$)
Converts all lowercase letters in the character string B$ to uppercase letters and
assigns the new character string to variable A$.

VIDEOIN . Reference

Section 4

Description The UCASES$ function converts lowercase letters in the character string to up-
percase letters. Existing uppercase letters remain unchanged.
VAL VALUe
(Function)
Action Converts a number represented as a character string to a number.
Format VAL (character string)
Example A=VAL("10")
Converts the character string “10” to the number 10 and assigns it to variable A.
Description The VAL function converts the character string to a real number.

VDWAI T

The character string must be specified as a character variable or character
constant starting with +, —, & or a digit between 0 and 9. The VAL function returns
0 if the character string does not conform to this format.

If the character string contains a character which cannot be converted to a
number, the characters before the unconvertable character are converted.
Spaces in the character string are ignored and the positions of the spaces are
closed in the returned number.

The STRS$ function has the opposite action to the VAL function.

VD WAI T

(Command)
Action

Format

Example

Description

VI DEQ N

Delays the VD interrupt the specified number of times.

VDWAI T number of times

VDWAI T 3
Delays the VD interrupt processing by 3 VD interrupts (approx. 50 ms).
The VDWAIT command counts the number of VD interrupts and delays VD

interrupt processing the specified number of VD interrupts. Each VD interrupt is
equivalent to 1/60 second (approx. 16.7 ms).

Program operation cannot be interrupted with the STOP Key or CNTRL+C Keys
during VDWAIT operation.

VI DEO | N

(Command)
Action

Format

Example

Description

Inputs an image to the image memory.
VI DEO N{page#] [, input path]

VIDEO N 0,0
Input the image from image bus 1 to the image memory.
The VIDEOIN command reads image data to the image memory. This command

is used to store an image before carrying out multiple measurements on the
same image.

Omit the page# or set to 0.
Input the path from which the image is loaded with a number, as follows:

0: image bus 1
1: image bus 0

The default value is 0.

165

WHILE-WEND

Reference Section 4

WDl SP

The image input timing in each input mode is shown below.

1 field
(1/60 s) ‘ ‘ ‘

o | |

VIDEOIN executed

‘ Image input interval ‘

Image input from image bus 0 is disabled while the image memory contents are
displayed.

W ndow DI SPI ay

(Command)

Action
Format

Example

Description

VH LE-V\END

Sets the type of image display in a window.

VDI SP window plane#, image type [, [display or not] [, binary reverse]]

WISP 2,1,1

Display the binary image plane#2 window plane and set a binary image in the
window.

The WDISP command sets the type of image display inside the window plane
specified by the window plane#. Set window plane# to —1 to specify all window
planes.

Set the image type to 0 to display the same image type inside the window as
outside the window. Specify 1 to display a binary image in the window.

Specify whether the window itself is displayed with the display or not item. Set to
1 to display the window or to 0 to hide the window. The default value is 0. If
window display is selected, the window gradations are increased, or made light-
er, to display the window.

Set the binary reverse parameter to 1 to reverse the displayed image or to O for a
normal displayed image. The default value is 0. The binary reverse setting is
valid only when the image type is set to 1 (binary image).

VH LE-Whi |l e END

(Command)

166

Action

Format

Example

The commands between the WHILE and WEND statements are executed
repeatedly while a condition remains fulfilled.

V\HI LE logical expression

VIEND
100 WHI LE KAI <10

200 VEEND

Executed the lines from 100 to 200 repeatedly while the value assigned to
variable KAl is less than 10.

WRITE

Reference

Section 4

Description

W NDOW

The commands between the WHILE and WEND statements (WHILE-WEND
loop) are executed repeatedly while the logical expression remains true (non-0).

The logical expression declared with the WHILE statement provides the
condition for the commands to be executed. The WHILE-WEND loop is
executed repeatedly while the logical expression remains true (non-0). Control
is transferred to the line after the WEND statement when the logical expression
becomes false (0).

The WHILE-WEND loop is not executed if the logical expression is initially false
(0). Control jumps immediately to the line after the WEND statement. Other
WHILE-WEND loops may be nested inside a WHILE-WEND loop. The nested
WHILE-WEND loops must have a one-to-one correspondence between the
WHILE and WHEN statements from the inside of the nested loops toward the
outside. WEND statements must not be omitted.

W NDOW

(Command)

Action

Format

Example

Description

VRI TE

Draws the window set for the specified scene to the window memory.

W NDOWkscene#

W NDOW 3
Draws the window set for scene #3.
The WINDOW command refers to the window data previously set in the Menu

mode. It draws the window data for all windows for the scene (0 to 15) specified
with the scene# parameter. The previous window memory contents are deleted.

To draw a complex window, it is convenient to set the window while looking at the
workpiece in the Menu mode before executing the WINDOW command.

VRI TE

(Command)

Action

Format

Example

Description

Displays data on the display.

WRI TE expression list [{, or ;} expression]

WRI TE A$, B
Writes the data defined in variables A$ and B to the text display.

Displays the numeric data and character data specified with the expression list
on the text display.

List the numeric and character expressions in the expression list delimited by
commas (,) or semicolons (;). Commas (,) or semicolons (;) are identical in func-
tion. If the expressions in the expression list are delimited by commas (,), the
data items are displayed on the screen separated by commas (,). A character
string is displayed enclosed in double-quotations (*).

If a numeric expression is specified, spaces in front of the data are deleted on the
display.

A carriage return character is inserted automatically after all the expressions are
displayed.

The PRINT command is similar to the WRITE command but differs as follows:

e comma (,) and semicolon (;) delimiter characters differ in function
e no commas (,) displayed between data items on the screen
e double-quotations (") not displayed

167

WSCROLL . Reference

Section 4

VRI TE #

e spaces in front of numeric data are displayed.

VWRI TE #

(Command)

Action

Format

Example

Description

WECRAOL L

Writes data to a sequential file.

WRI TE # file#, expression list [{, or ;} expression]

WRI TE #1, J, K, A$

Concatenates the numeric data and character data defined with the expressions
J (numeric), K (numeric), and A$ (character) and writes it to file #1.

Specify the file# as the number in which the output file was opened with the
OPEN command. Specify the same file# with the CLOSE command to close the
file after output is complete.

List the numeric and character expressions in the expression list delimited by
commas (,) or semicolons (;). Commas (,) or semicolons (;) are identical in func-
tion. If the expressions in the expression list are delimited by commas (,), the
data items are written to the file separated by commas (,).

A character string is automatically enclosed in double-quotations (") when
written to a file.

If a numeric expression is specified, spaces in front of the data are deleted when
the data is written to the file. Consequently, the file area used is less than with the
PRINT# command which writes leading spaces to the file.

The WRITE# command automatically inserts a linefeed character (CHR$(10))
after writing the last expression to the file.

The PRINT# command is similar to the WRITE# command but differs as follows:

e comma (,) and semicolon (;) delimiters differ in function.
e commas (,) and double quotations (”) are not automatically inserted.
e spaces in front of numeric data are also written to a file.

W ndow SCROLL

(Command)

168

Action

Format

Example

Description

Scrolls the window memory.

WSCROLL X, Y [, center of rotation X, center of rotation Y, angle of rotation]

WBCRCLL 50, 100, 256, 256, 30

Rotates the window memory 30% clockwise about the coordinates (256, 256)
and scrolls it 50 pixels in the X direction and 100 pixels in the Y direction.

The WSCROLL command scrolls the window memory in the X, Y, and 6 direc-
tions.

Specify the amount of scroll in the X direction with the X parameter and the
amount of scroll in the Y direction with the Y parameter. Specify the scroll
amounts as a number of pixels between —1023 and +1023.

Specify the amount of rotational scroll in degrees with the angle of rotation
parameter and the coordinates of the center of rotation with center of rotation X
and center of rotation Y. No rotation occurs if these parameters are omitted.
Specify the center of rotation X and center of rotation Y as a number of pixels
between —1023 and +1023.

Scrolling is completed in the order: rotation, X, Y.

PART 11
Version 2.00

SECTION 1
OVL Version 2.00 | mprovements

This section describes the additional functions and improvements found in OVL Version 2.00.

1-1 Overview of IMProVEMENLSttt 170
1-1-1 Summary of Additional OVL Capabilities 170
1-1-2 Alphabetical Listing of New Functions& Commands 171
1-1-3 Changesin SpeCificationso e 172
1-1-4 Increased Processing SPeedot it 172

1-2 Additional OVL Capabilities e 172
1-2-1 Multipleewindow FUNCLiONSo oo e 172
1-2-2 Window Enlargement/Reductiont 174
1-2-3 Binary IMageProCessiNgo oo i it 174
1-2-4 Raw IMageProCeSSINGottt e e e 175
1-2-5 Imageto-imageCaculationst e 175
1-2-6 High-speed Array Operationscouiiitnne e 175
1-2-7 RenumberingLabels 176
1-2-8 Zooming Window & ShadingMemory ..., 176
1-2-9 Filtering SElection i e 177
1-2-10 Checking Menu SettingSo vt e 177
1-2-11 Cdculationsusing SimpleRunlLength 179
1-2-12 BCD/Binary CONVEISIONottt et e et e e e 180
1-2-13 Console Key INerruptso e 180
1-2-14 Memory Card Operationsvvieie ittt et et 180
1-2-15 CameraSynchronizationoeiiiiin i 181
1-2-16 System Informationttt 181
1-2-17 Standard 1/O SEttiNGS . . .« v et e 181
1-2-18 Loading/Saving ProgramsthroughRS-232C 181
1-2-19 Binary Level SettingRangeo oot 182

169

Overview of | mprovements

Section 1-1

1-1 Overview of Improvements

1-1-1 Summary of Additional OVL Capabilities

Multiple Window Functions
Window
Enlargement/Reduction

Binary Image Processing

Raw Image Processing
Image-to-image Calculations
High-speed Array
Operations

Renumbering Labels
Zooming Window &
Shading Memory

Filtering Selection

Obtain Menu Settings

Calculations using Simple
Run Length

BCD/Binary Conversion

Console Key Interrupts

Memory Card Operations

Camera Synchronization

System Information

Standard I/O Settings

Loading/Saving Programs
through RS-232C

Binary Level Setting Range

170

The following capabilities have been added for Version 2.00. These improve-
ments are described in detail in PART Il 1-2 Additional OVL Capabilities.

The area, center of gravity, and axis angle can be calculated quickly with 9 or
more windows.

Window size can be enlarged and reduced to check for omission or blurring of
characters.

Binary image processing such as edge detection, changing line thickness,
zooming, elimination of isolated points, filling in holes, and elimination of sur-
rounding graphics can be performed.

Raw image processing such as Sobel processing and 3x3 mask processing can
be performed.

Image-to-image calculations can be performed on binary and raw images.

A single command can be used to perform high-speed operations between
array variables.

Labels can be renumbered based on the windows’ center of gravity or location
on the screen.

Window memory and shading memory can be enlarged and reduced. It is pos-
sible to switch quickly between several windows for measurements.

Previously, image filtering functions could only be set in the menu. These func-
tions can now be selected in OVL as well.

The criteria and reference image data set in the menu can now be obtained from
OVL.

A variety of measurements can be made based on the simple run length. This
function can be used for quickly measuring dimensions, counting the number of
IC pins, etc.

Two functions have been added to convert numerical values between BCD and
binary. These functions are useful when outputting data from Parallel I/O Units
or Terminal Block Units.

Several commands have been added to control Console key interrupts and de-
fine interrupt routines.

The Memory Card can be formatted and the Memory Card’s battery voltage can
be checked from OVL.

A command has been added that selects the method of camera synchronization
(internal or external).

A new function has been added that displays the model and version of the sys-
tem. This function can be used to ensure compatibility when writing programs.

Instructions can be input through the RS-232C port instead of a keyboard, and
the video monitor output can be output to the RS-232C port, so an OVL program
can be developed without a keyboard.

The $1A code at the end of files is now recognized when loading or saving pro-
grams through the RS-232C port using LOAD” COM:” or SAVE” COM:".

The binary level range has been doubled, so the maximum binary level setting is
now 511 rather than 255.

Overview of | mprovements

Section 1-1

1-1-2 Alphabetical Listing of New Functions & Commands

The following table lists the functions and commands that have been added for
OVL Version 2.00. (New features have been added to FILTDATA, IPL, LEVEL,

and LSORT.)
Command/Function Operation Type Page
A | ARRYFUNC Performs high-speed operations between the variables of up to 4 arrays. | Command 184
BATCHK Checks the voltage of the Memory Card’s battery. Function 185
BCDTOBIN Converts BCD data to binary. Function 185
B | BEDGE Detects edge of a binary image. Command 185
BINTOBCD Converts binary data to BCD. Function 186
BMFUNC Performs logic operations on binary images. Command 186
CAMSYNC Selects camera synchronization method. Command 186
C | CONKEY ON/ Enable and disable input of Console key interrupt. CONKEY STOP masks | Command 187
OFF/STOP input of Console key interrupt. (Interrupt is recorded by not executed until
CONKEY ON is executed.)
D |DILA Expands a binary image. Command 187
EDGRJECT Deletes the graphics surrounding a binary image. Command 188
E [ELIM Eliminates isolated points from a binary image. Command 188
EROS Reduces a binary image. Command 189
FILTDATA Specifies the line filter factors. (With Sobel processing) Command 189
F | FILTSEL Selects image filtering functions. Command 190
FORMAT Formats the Memory Card. Command 191
GETMDATA Obtains measurement data (MDATA) in a batch. Command 191
G |GETVER Obtains the system’s version. Function 192
GMFUNC Performs logic operations on raw images. Command 193
H | HFILL Fills holes in binary images. Command 193
I |IPL Sets the OVL boot-up mode. (Loads and executes the designated file.) Command 194
L |LEVEL Sets the binary level for each binary image plane. Command 195
LSORT Renumbers the assigned label numbers. Command 195
MASK3 Performs 3x3 mask filtering on raw images. Command 195
M | MWMEAS Performs multiple-window measurements. Command 196
MWSET Defines windows for use in MWMEAS command. Command 197
O | ON CONKEY Defines the interrupt subroutine that will be executed when a Console key | Command 197
GOSuUB interrupt input is received.
R | RUNL2 Performs secondary processing at high speed on data obtained with the Function 198
RUNL function.
SCNJUDGE Reads the criteria that were set in the menu mode. Function 198
S | SCNSTAND Reads the reference image data that were set in menu mode. Function 199
SOBEL Performs Sobel processing. Command 199
SZOOM Zooms (reduces/enlarges) the shading memory. Command 200
T | THIN Reduces line thickness in a binary image. Command 200
WDILA Enlarges the binary image in window memory. Command 200
W | WEROS Reduces the binary image in window memory. Command 201
WZOOM Zooms (reduces/enlarges) the window memory. Command 201

171

Additional OVL Capabilities Section 1-2

1-1-3 Changes in Specifications
The following changes have been made in OVL specifications.

File Delimiters The following table shows the delimiters used with OVL Versions 1.J[] and
2.00. Relevant files are data files and programs transferred via RS-232C or be-
tween the CPU and a Memory Card.

File I/O Delimiters used
Version 1.0 Version 2.00
Input CR+LF or LF CR+LF or CR
Output CR+LF CR+LF

As shown in the table, Version 2.00 cannot handle version 1.[J[] files that use
LF as a delimiter. Be sure to change these delimiters to CR or CR+LF before
inputting the files to OVL Version 2.00.

Compile Work Space The factory setting for compile work space has been increased from 4K bytes to
8K bytes in order to prevent “Out of compile work space” errors. The maximum
possible setting for compile work space is 16K bytes.

1-1-4 Increased Processing Speed
The following improvements have been made to increase processing speed.

Memory Card Access Speed Datain Memory Cards is accessed 1.5 times faster (on average) when loading/
saving programs or reading/writing data files. The increase in the access speed
varies depending on the operation being performed.

Labelling Speed The labelling operation performed with the LABEL command is 1.5 times faster
(on average), although the increase in the labelling speed varies depending on
the conditions.

The LDATA function obtains center-of-gravity data 1.5 times faster (on average),
although any data less significant than 0.0001 is truncated.

1-2 Additional OVL Capabilities

This section describes the additional capabilities of OVL Version 2.00. Refer to
PART Il 1-1-1 Summary of Additional OVL Capabilities for a summary of these
improvements.

1-2-1 Multiple-window Functions

This section describes how to use the new multiple-window functions added for
OVL Version 2.00.

Multiple-window Features The multiple-window functions allow high-speed measurements to be made
with 9 or more windows. The basic features of multiple-window functions are
listed below:

1,2,3... 1. The possible number of windows is limited only by memory capacity.
2. Arbitrary window graphics are possible.

3. The items that can be measured are the area, center of gravity, and axis
angle within individual windows.

4. The measurement results are brought together and stored in array variables
at high speed.

. Xand Y position compensation functions are provided.
. White or black pixels can be specified for measurements.
. Binary image planes can be specified for measurements.

. The X center of gravity and Y center of gravity can be measured simulta-
neously.

0 N O O

172

Additional OVL Capabilities Section 1-2

Multiple-window Applications The multiple-window functions are useful in the following kinds of situations:
e There are a large number of relatively small measurement regions.

» Position compensation is performed in a large window, but the measurement
region is small after position compensation.

e The presence of an object is measured by a large number of points.
Using Multiple Windows The basic procedure for using multiple-window functions is listed below:

1,2,3... 1. If measurements will be made in a window that is not rectangular, the win-
dow graphic must be drawn in the window memory beforehand. It is not nec-
essary to draw rectangular windows in window memory.

2. Before beginning the measurement, set the binary image plane and mea-
surement region (window) to be used in the measurement. Once these set-
tings have been made, they are usually valid thereafter.

3. Input the binary image in image memory. The image is normally input
through image bus 0.
4. Make the multiple-window measurement on the binary image that was input
in step 3.
5. Process the results of the multiple-window measurement.
There are two ways to specify the measurement region (window):
* The window's coordinates can be set one-by-one by the program. This method
is convenient if the window coordinates are known beforehand.
o A window that has been set in menu mode can be registered as a measure-
ment region. Use the labelling function and the window’s coordinates will be
calculated automatically by a program. A program that automatically calcu-

lates the coordinates is required, but this is a very easy and convenient way to
set a window.

Refer to the sample programs in PART Il 3-1 Determination of Windows’ ON/
OFF Status for a more detailed description of using multiple windows.

Precautions for Multiple Take the following points into consideration when using multiple-window func-
Windows tions:
1,2,3... 1. The processing time is proportional to the size of the rectangle that encloses

the measurement region (window).

2. Measurements are made on the rectangle that encloses the measurement
region. Consequently, if a second window is drawn within the rectangle that
encloses an L-shaped window, the second window will be measured as the
same window.

w1 w1
WO

w0 W2

If WO and W1 are set within the same window plane as shown in the diagram
on the left, W1 will be within the rectangle that encloses W0. When WO is
measured, the processing will use W0 and part of W1 as the measurement
region.

In these cases, split the window as shown in the diagram on the right. Split-
ting the window like this will increase the processing speed. Another solu-

173

Additional OVL Capabilities Section 1-2

tion would be to draw WO and W1 in separate window planes and perform
the multiple-window measurement twice.

3. Multiple-window measurements cannot be performed in windows that have
been enlarged or reduced with the WZOOM command, so do not use the
multiple-window functions and WZOOM together.

1-2-2 Window Enlargement/Reduction

Windows can be enlarged with the WDILA command and reduced with the
WEROS command. This enlargement and reduction is useful when checking for
omission or blurring of characters.

10000 'For the label with the |argest area, draw an
10010 'enl arged reverse w ndow i n wi ndow pl ane 7
10020 "and a reduced wi ndow i n wi ndow pl ane 6.

10030 DI SPLAY 31,0 "Binary inmge display
10040 WI SP -1,1,1 "W ndow di spl ay

10050 CLS 2

10060 RMODE 0,0,0 "Measure bl ack pixels
10070 MEASURE " Measure

10080 LABEL "Label i ng

10090 | F LNUWO THEN 10040

10100 LSORT O "Sort by area

10110 ' Find coordi nates of the enclosing rectangle.
10120 X1=LDATA(1, 7)-10: Y1=LDATA(1, 8)-10

10130 X2=LDATA(1, 9) +10: Y2=LDATA(1, 10) +10

10140 IF X1<1 THEN Xi=1

10150 IF Y1<1l THEN Y1=1

10160 I F X2>510 THEN X2=510

10170 I F Y2>510 THEN Y2=510

10180 LPUTIMG 1,2,0,7 "Draw i n wi ndow nmenory

10190 WDI LA 7, X1, Y1, X2,Y2,,3 " Expand 3 tines
10200 MASKBI T 2,0, &H7F ' Mask pl anes other than plane 7.
10210 BOX X1, Y1, X2, Y2, 2, 0, XOR " Rever se wi ndow nenory.

10220 MASKBIT 2,0,0
10230 LPUTIMG 1,2,0,6 "Draw i n wi ndow rmenory
10240 WERCS 6, X1, Y1, X2,VY2,,3 " Reduce 3 times.

1-2-3 Binary Image Processing

Various kinds of binary image processing can be performed on binary images
stored in image memory.

10000 'Detect edge in plane 7 in inage menory.

10010 DI SPLAY 31,3 "Binary i mage: bus 1

10020 BACKDI SP 1,7 "Binary display plane 7.

10030 LEVEL 7,100, 255 "Binary |evel setting.

10040 VIDEON 0, 1: VDWAIT 3 "I nput i mage

10050 FILTERIN 1 "Di splay i mage nmenory contents
10060 BEDCGE O, 7 " Edge detection for entire image

174

Additional OVL Capabilities Section 1-2

1-2-4 Raw Image Processing

10000
10010
10020
10030
10040
10050

The MASK3 command performs 3x3 mask processing on raw images stored in
image memory.

The SOBEL command performs sobel processing on raw images stored in
image memory.

The FILTDATA and FILTER commands can be used for filter processing, but the
FILTER command processing is performed with hardware using the high-speed
interlaced method. On the other hand, the MASK3 and SOBEL command pro-
cessing is performed with the non-interlaced method.

' Sobel processing on a rectangul ar region.

Dl SPLAY 31 " Raw i mage di spl ay.

FILTERIN O " Camera i mage di spl ay.

VIDEO N: VDWAI T 3 ' Input inage

FILTERIN 1 "Di splay i nage nenory contents

SOBEL 0, 100, 100, 300, 300 " Sobel processing of rectangul ar region

1-2-5 Image-to-image Calculations

10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100

The BMFUNC command can perform calculations between binary images.

The GMFUNC command can perform calculations between raw images, but
only with F300-C11E models equipped with 2 image memories.

"Di splays only the part change in 1 second.

DI SPLAY 31,3 "Binary imge: bus 1

BACKDI SP 1, 7 "Binary display plane 7.

MASKBI T 3, 0, &H7F ' Mask pl anes ot her than pl ane 7.
VIDEQON 0, 1 "I nput binary inmage.

VDWAI T 60 "Wait 1 second.

MASKBI T 3, 0, &HBF ' Mask pl anes ot her than pl ane 6.
VIDEQON 0, 1 "I nput binary inmage.

VDWAI T 3 "Wait for image to be input.
FILTERIN 1 "Di splay image nenory contents
BMFUNC 2,0,6,2,0,7 "Use XOR to calculate parts that don't match.

1-2-6 High-speed Array Operations

The ARRYFUNC command can be used to perform a variety of array operations
at high speed. Be sure to declare the array variables with the DIM command be-
fore using ARRYFUNC.

The following examples show 5 applications of the ARRYFUNC command.

Example 1 The content of array variable A is copied to array variable B.

ARRYFUNC 12, 100, B, A

Example 2 The content of array variable A is divided by 100.

FOR 1=0 TO 99
B(1) =100
NEXT
ARRYFUNC 6, 100, A, A, B

Example 3 The area within each window is compared to the lower and upper limits and the

result of the comparison is stored in array variable JG.
CGETMDATA 0, AR
ARRYFUNC 10, 8,JG AR, LO, HI

175

Additional OVL Capabilities Section 1-2

Example 4 The ON/OFF status in each window is output to a Terminal Block Unit.
GETMDATA 0, AR
ARRYFUNC 11, 8, JG&, AR, LO HI
DOUT JG&&(0), 0, 32

Example 5 The ON/OFF status in 64 multiple windows is output to a Parallel I/O Unit.
MAVEAS 0, 0,0,1,0,0,0, AR
ARRYFUNC 11, 64, JG&, AR, LO, HI
DOUT JG&&(0), 0, 32
VDWAIT 1
DOUT JG&&(1), 0, 32

1-2-7 Renumbering Labels

Previously, label numbers could be sorted according to their area only, but the
LSORT command can renumber the labels according the windows’ center of
gravity or position on the screen.

The diagram on the left shows labelling according to screen position, beginning
in the upper left corner. The diagram on the right shows labelling according to the
location of the X center of gravity, beginning on the left. (The numbers indicate
the renumbered labels.)

1 1
2 3 4 6
4 2
5 5
7 7
6 3
Screen position X center-of-gravity position (from the left)

(horizontal numbering from upper-left)

1-2-8 Zooming Window & Shading Memory

Window memory can be enlarged and reduced with the WZOOM command.
Window memory can be used like a bank if the WZOOM and WSCROLL com-
mands are used together.

512
No. 1 J
512 No. 2
sl
No. 3 No. 4

176

Additional OVL Capabilities Section 1-2

When windows have been drawn as in the diagram above, the following com-
mands would expand and measure window No. 1.

WZOOM 2
WBCROLL 0,0
MEASURE
The following commands would expand and measure window No. 3.
WZOOM 2
WBCROLL 0, -512
MEASURE

The coordinates specified by the WSCROLL command are performed on the
coordinate space zoomed by the WZOOM command. If it is expanded by 2, the
space would be (0,0) to (1023,1023). If it is reduced by 2, the space would be
(0,0) to (255,255).

Operation of the SZOOM command is identical to that of the WZOOM com-
mand.

1-2-9 Filtering Selection
Image filtering functions can be selected easily with the FILTSEL command.
Images are output from image bus 0 after image filtering.

When vertical edge or horizontal edge filtering are selected, the contents of the
LUT (look-up table) for binary conversion are overwritten. With vertical edge or
horizontal edge filtering it is necessary to set the binary conversion level for the
negative portion of grayness.

Execute the following commands when setting the binary conversion level from
L1toL2:

LEVEL -1,L1,L2: LEVEL -1,512-L2,512-L1, OR
To display a raw image with strong smoothing:

DI SPLAY 31,0

FILTSEL 2,0
To display a binary image with strong smoothing:

DI SPLAY 31,0

FILTSEL 2,1

LEVEL -1, 100, 255 'Not necessary when specified beforehand.
To display a raw image with vertical edge filtering:

DI SPLAY 31,0

FILTSEL 9, 0 'contents of the LUT for binary conversion are overwitten.
To display a binary image with vertical edge filtering:

DI SPLAY 31,0

FILTSEL 9,1

LEVEL -1, 100, 512-100 " Absol utely necessary.

1-2-10 Checking Menu Settings

The criteria set with the menu can be read with the SCNJUDGE function.

This function is useful in a measurement program used for discrimination based
on the criteria, when only the criteria are set in menu mode.

Example 1

10000 CHANGE 0 "Switch to scene O.

10010 HI =SCNJUDGE(0, 0, 0, 0) "Upper Iimt for area of scene 0, w ndow O.
10020 LO=SCNJUDGE(0, 0,0, 1) "Lower limt for area of scene 0, wi ndow O.

177

Additional OVL Capabilities Section 1-2

10030 MEASURE " Measure.

10040 A=NDATA(O, 0) "Cbtain area.

10050 I F LO<=A AND A<=H THEN PRI NT "OK" ELSE PRI NT " NG’
10060 GOTO 10030

Example 2

10000 'Display the criteria set with the nenu.

10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10200
10210
10220
10230
10240
10250
10260

10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160

178

K$(0) =" Area”
K$(1)="X grav cent”
K$(2)="Y grav cent”
K$(3)="Axis angle”
K$(4) =" Edge angl e”
K$(5)="X center coor.”
K$(6)="Y center coor.”
K$(7)="Angl e of inclination”
K$(8)="Cross point X coordinate”
K$(9)="Cross point Y coordinate”
U$(0)="9%
US(1)="%Pl X" : US(2) =" mmi : U(3) =" +°"
U$(4) =" Pl X" : UB(5) =" i : U$(6) =" °"
FOR I=0 TO 9
HI =SCNJUDGE(0, 0, |, 0)
LO=SCNJUDGE(0, 0, I, 1)
UN=SCNJUDCE(0, 0, I, 2)
PRI NT USI NG " @ UPPER LI M T=######. ### @ ; K$(1), H , US(UN)
PRI NT USI NG ” @ LONER LI M T=######. ### @ ; K$(1), LO, US(UN)
NEXT

The reference image data set with the menu can be read with the SCNSTAND
function.

This function is useful when comparing the reference image data set with the
menu or performing position compensation. All of the measurement item data
will be renewed when reference image data is registered with the menu.

"Display the reference image data set with the nmenu.
DI M K$(11)
K$(0)="Area reference”
K$(1)="X grav cent reference”
K$(2)="Y grav cent reference”
K$(3)="Axi s angle reference”
K$(4) ="Edge angl e reference”
K$(5)="X center coor. reference”
K$(6)="Y center coor. reference”
K$(7)="Angl e of inclination reference”
K$(8)="Cross point X coor. reference”
K$(9)="Cross point Y coor. reference”
K$(10) =" X posi tion conpensation”
K$(11)="Y position conpensation”
FOR 1=0 TO 11
PRI NT USI NG " @ #####. ##"; K$(1), SCNSTAND(O, O, |)
NEXT

Additional OVL Capabilities

Section 1-2

1-2-11 Calculations using Simple Run Length

: Area

: Number of Runs

: Average Run Length

: Maximum Run Length

: Minimum Run Length

: Median Run Length

: Max. Run Length Y Coor.
: Min. Run Length Y Coor.
: Med. Run Length Y Coor.

© 00 N o 0o~ WN - O

: Number of Run Groups
10: Average Run Group Width
11: Max. Run Group Width

The RUNL2 function can be used to calculate a variety of values using the sim-
ple run length.

Work piece

When the work piece and window are set up as shown in the diagram above, the
various measurements described below can be made using RUNL2. The rect-
angular pieces projecting to the right from the work piece are known as legs. The
Y coordinate of the upper edge of each leg is labelled YSn, and the Y coordinate
of each lower edge is labelled YEn.

There are 17 types of measurements possible with RUNL2. These measure-
ments, specified by numbers 0 to 16, are described below.

The total area of the legs (area of the work piece within the window).

The number of horizontal lines = the total height of the legs = X (YEn-YSn+1).
The average length of all legs.

The length of the longest leg (leg 5 in the diagram above).

The length of the shortest leg (leg 1 in the diagram above).

The length of the median leg (the middle of the group, ordered by length).
The Y coordinate of the longest leg. (YS5 in the diagram above)

The Y coordinate of the shortest leg. (YS1 in the diagram above)

The Y coordinate of the median leg.

Number of legs.

The average width of the legs.

The maximum value of leg width. (In the diagram above, leg 7's width =
YE7-YS1+1))

179

Additional OVL Capabilities Section 1-2

12: Min. Run Group Width The minimum value of leg width. (In the diagram above, leg 1's width = YE1-
YS1+1))

13: Median Run Group Width The median leg width.

14: Max. Run Group Width The Y coordinate of the leg with the maximum width. (YS7 in the diagram above)
Y Coordinate

15: Min. Run Group Width The Y coordinate of the leg with the minimum width. (YS1 in the diagram above)
Y Coordinate

16: Median Run Group The Y coordinate of the leg with the median width.
Width Y Coordinate

1-2-12 BCD/Binary Conversion

The BCDTOBIN function converts BCD values to binary and the BINTOBCD
function converts binary values to BCD. These functions are useful when BCD
measurement results need to be output in binary. The BCD values must be 8

digits or less.
10000 CHANGE O "Scene 0 nmeasurement conditions.
10010 MEASURE " Measure.
10020 AREA=BI NTOBCD(MDATA(0, 0)) "Converts area to BCD.
10030 DOUT AREA 0, 32 "8-digit BCD data is output in 32 bits.

1-2-13 Console Key Interrupts

The CONKEY ON, CONKEY OFF, and CONKEY STOP commands control
Console key interrupts and the ON CONKEY GOSUB command defines the in-
terrupt subroutine. Operation of the interrupt is identical to that of ON HELP GO-
SUB.

10000 ON CONKEY GOSUB * CONKEYI NT

10010 CONKEY ON

10020 GOTO 10020

20000 * CONKEYI NT

20010 PRI NT " Consol e key interrupt occurred.”
20020 PRI NT "The key code was: "; HEX$(KEYI N(0))
20030 RETURN

1-2-14 Memory Card Operations
The BATCHK function is used to check the Memory Card’s battery voltage. This
is a convenient way to determine when the battery needs to be replaced.
SELECT BATCHK("C: ")
CASE 0: PRINT "Low vol tage. Replace battery.”
CASE 1: PRI NT "Insufficient voltage. Replace battery soon.”
CASE 1: PRINT "Battery voltage O K.”
END SELECT

The Memory Card can be formatted with the FORMAT command. All data (such
as scene data saved in menu mode) will be erased when the Memory Card is
formatted.

When FORMAT is executed, a prompt will appear to confirm that the Memory
Card will be formatted. Input “Y” to proceed or “N” to cancel.

180

Additional OVL Capabilities Section 1-2

1-2-15 Camera Synchronization

The CAMSYNC command can be used to set the camera synchronization meth-
od to internal synchronization or external synchronization. When internal syn-
chronization is selected, some time is required for the camera image to stabilize.

The selected synchronization method is valid for all cameras. It is not possible to
set the synchronization of any particular camera or have some cameras with in-
ternal synchronization and some with external synchronization.

10000 "Switch to internal synchronization.

10010 CAMERA O "Sel ect internal synchronization camnera.
10020 CAMSYNC 1 "Sel ect internal synchronization.
10030 VDWAIT 3 "Wait for inmage to stabilize.

1-2-16 System Information

The GETVER function can be used to display the OVL version and other system
information. This function is useful when writing programs, since it can be used
to ensure compatibility.

10000 | F GETVER(1)=11 THEN PRINT "There are 2 inmage nmenories.”

10010 PRI NT "OVL Version = "; GETVER(2)

10020 PRI NT " System Version = "; GETVER(3)

10030 | F GETVER(2)<2.00 THEN

10040 PRI NT "Ml ti pl e-wi ndow functions cannot be used.”

10050 END | F

1-2-17 Standard 1/0O Settings

Instead of using a keyboard, commands can be input from a device connected to
the RS-232C port. Instead of using a video monitor, data can be output to a de-
vice connected to the RS-232C port.

With standard I/O specified, settings can be made with IPL commands or the
menu mode’s “Y. System” “M.Initial Mode”. The settings will be effective the next
time that OVL is booted up, and will continue to be effective even after the power
is turned off.

For a standard 1/O device connected through the RS-232C port, channel 0 is
fixed to 9600 baud, 8 data bits, no parity, and 1 stop bit. Screen control, such as
clearing the screen, cannot be performed just by outputting characters through
the RS-232C.

RS-232C file control cannot be performed on channel 0 when the RS-232C port
is specified for standard 1/O device.

1-2-18 Loading/Saving Programs through RS-232C

LOAD” COM:” and SAVE” COM:” can be used to load and save programs
through the RS-232C port. The communications protocol is 9600 baud, 8 data
bits, no parity, and 1 stop bit.

Programs are input through the RS-232C port with LOAD” COM:”. The LOAD
command ends when the file’s end code (1A$ in hexadecimal) is received. Pro-
grams are output through the RS-232C port with SAVE” COM:”.

The following commands can be used to load and save screen data and image
data through the RS-232C port. They are used just like LOAD” COM:” and

SAVE” COM:".
SCNLOAD "COm ™~ Loads screen data.
SCNSAVE "COM " Saves screen dat a.
| MGLOAD " COMm " Loads i mage dat a.
| MGSAVE " COM " Saves i nage dat a.

181

Additional OVL Capabilities Section 1-2

1-2-19 Binary Level Setting Range

In previous versions of OVL, the LEVEL command’s binary level range was 0 to
255. In Version 2.00, this range has been doubled to 0 to 511. When filtering has
been performed with the FILTDATA and FILTER commands, these values are
used when pixel values (grayness values) are negative. The upper and lower
limits 256 to 511 set with the LEVEL command correspond to pixel values (gray-
ness values) of —256 to —1.

182

SECTION 2
Reference

This section provides detailed information on the new Version 2.00 commands and functions. Examples are also provided.

183

ARRYFUNC

Reference Section 2

ARRYFUNC

ARRaY FUNCti on

(Command)
Action

Format

Example

Description

Details of Operation 11

184

Note

Performs a variety of array operations at high speed.

ARRYFUNC operation, data elements, array name 1, array name 2 [, array
name 3 [, array name 4]]

ARRYFUNC 10, 8, JUDGE, AREA, LO H

The ARRYFUNC command performs an operation between the variables of 2 to
4 arrays at one time, speeding up processing by eliminating the need for FOR-
NEXT or other loop processing. For example, this function is useful when
comparing measurement results to upper and lower limit values.

Specify the data elements as the number of array variables that will be used in
the operation. The number of array variables must be declared beforehand us-
ing the DIM command, and the number of array variables must be greater than
the specified number of data elements.

It is not necessary to include qualifiers or parentheses in the array name. When
decimal points aren’t used, the processing speed can be increased by using in-
teger type arrays or long integer type arrays.

Specify the operation with one of the values listed below to determine the type of
operation that will be performed. (Al refers to array name 1, A2 refers to array
name 2, A3 refers to array name 3, and A4 refers to array nhame 4.)

0: Al =A2AND A3

1: Al =A20RA3

2: Al =A2 XOR A3

3: Al =A2+A3

4. Al =A2-A3

5: Al = A2xA3

6: Al =A2+A3

7: Al =-1 (A2=A3)
= 0 (A2<>A3)

8. Al =-1 (A2 =z A3)
= 0 (A2<A3)

9: Al =-1 (A2 = A3)
= 0 (A2>A3)

10: A1 =-1 ((A3 = A2) AND (A2 = A4))

0 ((A2 <A3)OR (A4 <A2)

11: The results of operation 10 (above) are substituted for Al as a bit string.
(This operation is described in more detail below.)

12: A1 = A2

1. If A3 is 0 in the division in operation 6, the result will be 0.
2. Overflow processing is not performed.

The right sides (comparison results of A2, A3, and A4) are stored in the left side’s
array variable beginning with the least significant bit or in numerical order begin-
ning with the one with the smallest element number.

When the right side’s operation result is true, the bit value is 1. When the opera-
tion result is false, the bit value is O.

When the left side’s array variable is the integer type, the results of the right
side’s element numbers 0 to 15 are stored in element number 0, and the results
of element numbers 16 to 31 are stored in element number 1. Thereafter the pro-
cess is repeated.

Reference Section 2

BATCHK

When the left side’s array variable is the long integer type, the results of the right
side’s element numbers 0 to 31 are stored in element number 0. Thereafter the
process is repeated.

If this function is used, each window’s area discrimination result is stored as bit
information, so it is easy to determine each windows’ OK/ON discrimination by
outputting this bit information through an output port.

BATtery CHecK

(Function)
Action

Format
Example
Description

BCDTOBI N

Checks the voltage of the Memory Card’s battery.

BATCHK (drive)
BAT=BATCHK(” C: ")
Checks the voltage of the Memory Card’s battery. One of the values listed below
will be returned to indicate the battery status.

0: Low voltage (Battery must be replaced.)

1: Insufficient voltage (Battery should be replaced soon.)

2: Normal voltage (Battery is O.K.)
The Memory Card is the “C” drive. An error will occur if a drive other than “C” is
specified.

BCD TO Bl Nary

(Function)
Action

Format
Example
Description

BEDGE

Converts BCD data to binary.

BCDTOBI N(data)
A=BCDTOBI N(&H123)

Converts BCD data to binary. BCD values between 0 and &H99999999 can be
specified. This function is useful when inputting BCD data that was input to Ter-
minal Block Units or Parallel I/O Units.

Bi nary EDGE

(Command)
Action

Format

Example

Description

Detects edges of a binary image.

BEDGE [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, link evalua-
tion constant]]]]]

BEDGE O, 7, 0, 0, 200, 200
BEDCE O, 7

Extracts edges from the binary image in image memory within the region defined
by (X1, Y1) and (X2, Y2). This command is useful for detecting the outline of a
work piece.

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane in which edges will be
detected.

The start point (X1, Y1) and end point (X2, Y2) of a rectangular region can be
specified to reduce the search region. The coordinates can be set in the range 1
to 510. The default points are (1, 1) and (510, 510).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

In edge detection processing, pixels with a value of 1 that are adjacent to a pixel
with a value of 0 are set aside, and the other pixels are set to 0.

185

CAMSYNC Reference Section 2
Bl NTOBCD Bl Nary TO BCD
(Function)

Action Converts binary data to BCD.

Format Bl NTOBCD (data)

Example A=BI NTOBCD(100)

Description Converts binary data to BCD. This function is useful when outputting measure-

BMFUNC

ment data to Terminal Block Units or Parallel I/O Units. Data values between 0
and 99999999 can be specified.

Bi nary Menory 1 mage FUNCt I on

(Command)

Action

Format

Example

Description

CANMEYNC

Performs logic operations on two binary images.

BMFUNC operation, [page#1], plane#1, [page#2], plane#2 [, [X1] [, [Y1] [, [X2]
[,Y2]1]

BMFUNC O, , 0, , 7

BMFUNC performs a logic operation on two binary images in plane#1 and
plane#2. The result of the operation is written to page number 2, plane number 2
of image memory.

Three operations (AND, OR, and XOR) are available. Specify the operation by
setting the operation parameter to one of the values listed below.

0: AND
1. OR
2: XOR

Specify the desired image memory page numbers with page#1 and page#2.
The default value is O for both page#1 and page#2.

The logic operation will be performed within the rectangular region specified by

start point (X1, Y1) and end point (X2, Y2). The coordinates can be set in the
range 0 to 511. The default points are (0, 0) and (511, 511).

CAMer a SYNChr oni zati on

(Command)

Action
Format

Example

Description

186

Selects the method of camera synchronization.

CAMSYNC sync mode
CAMSYNC 0

Set the synchronization mode to 0 to specify external synchronization, set a val-
ue other than 0 to specify internal synchronization.

The selected synchronization method is valid for all cameras. It is not possible to
set the synchronization mode of particular cameras.

.. Reference

Section 2

CONKEY QN OFF/ STOP CONsol e KEY ON OFF/ STOP

(Command)

DI LA

Action

Format

Example

Description

The CONKEY ON command enables Console key interrupts, the CONKEY OFF
command disables Console key interrupts, and the CONKEY STOP command
masks Console Key interrupts.

CONKEY ON
CONKEY OFF
CONKEY STOP

CONKEY ON

The CONKEY ON command enables Console key interrupts. When Console
key interrupts are enabled, pressing the Console key will interrupt the main pro-
gram and execute the interrupt subroutine defined by the ON CONKEY GOSUB
command. CONKEY OFF disables Console key interrupts and CONKEY STOP
masks Console Key interrupts.

The following commands are related to CONKEY ON, CONKEY OFF, and CON-
KEY STOP:

ON CONKEY GOSUB

Dl LAt e

(Command)

Action

Format

Example

Description

Expands a binary image.

DI LA [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [,[link evalua-
tion constant] [, enlargements]]]]]]

DI LA O, 7,0,0, 200, 200
DILA O, 7

Enlarges the binary image in image memory within the region defined by (X1,
Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane in which the binary
image will be expanded.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be expanded. The coordinates can be set in the range 1 to
510. The default points are (1, 1) and (510, 510).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

The enlargements setting specifies the number of times that the image will be
enlarged. The default value is 1.

When a pixel within the rectangular region has a value of 0 and the adjacent pixel
has a value of 1, enlargement processing will replace it with a value of 1.

The specified rectangular region cannot be exceeded in enlargement. Enlarge-
ment processing will end before the enlargements setting is reached if it is not
possible to enlarge the image further.

187

ELIM Reference Section 2
EDCRIECT EDGe ReJECT
(Command)
Action Deletes exterior graphics from a binary image.
Format EDGRIECT [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, link
evaluation constant]]]]]
Example EDGRIECT 0, 7, 0, 0, 200, 200
EDGRIECT 0, 7
Description Deletes exterior graphics from the binary image in image memory within the re-
gion defined by (X1, Y1) and (X2, Y2).
The page# specifies the page number (0 or 1) in image memory. The default
page number is O.
The binary image plane# specifies the binary image plane in which the exterior
graphics will be deleted.
The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region in which the exterior graphics will be deleted. The default points are
(0, 0) and (511, 511).
The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.
A “Vision error” will occur if the number of the diagram’s borderlines exceeds 255
or the length of the diagram’s borderline exceeds 4096.
ELI M ELI M nat e
(Command)
Action Eliminates isolated points from a binary image.
Format ELI M [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, link evalua-
tion constant]]]]]
Example ELIM O, 7,0, 0, 100, 100
ELIMO, 7
Description Eliminates isolated points from a binary image in image memory within the re-

188

gion defined by (X1, Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is O.

The binary image plane# specifies the binary image plane in which the isolated
points will be eliminated.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region the isolated points will be eliminated. The coordinates can be set in
the range 1 to 510. The default points are (1, 1) and (510, 510).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

FILTDATA

Reference Section 2

EROS

ERCOSI on

(Command)

Action

Format

Example

Description

FI LTDATA

Reduces a binary image.

ERQOS [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [,[link evalua-
tion constant] [, reductions]|]]]]

ERCS 0, 7, 0, 0, 200, 200
ERCS 0, 7

Reduces the binary image in image memory within the region defined by (X1,
Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is O.

The binary image plane# specifies the binary image plane in which the binary
image will be reduced.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be reduced. The coordinates can be set in the range 1 to
510. The default points are (1, 1) and (510, 510).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

The reductions setting specifies the number of times that the image will be re-
duced. The default value is 1.

When a pixel within the rectangular region has a value of 1 and the adjacent pixel
has a value of 0, reduction processing will replace it with a value of 0.

The specified rectangular region cannot be exceeded in reduction. Reduction
processing will end before the reductions setting is reached if it is not possible to
reduce the image further.

Fl LTer DATA

(Command)

Action

Format
Example

Description

Specifies the line filter factors.

FI LTDATAdata0, data 1, ..., data 8 [, [global factor] [, sobel processing]]
FILTDATA O,1,1,1,1,1,1,1,1,8

The FILTDATA command sets the line filter factors. Either “2: sharpened image”
or “5: line filter image” must be selected with the FILTER command to enable the
line filter factors specified with the FILTDATA command.
If “2: sharpened image” or “5: line filter image” have been selected with the
FILTER command, filtering will be performed according to the following equa-
tion:

Pixel grayness = (¥ data n x M) + (global factor)

(M, indicates the grayness of the pixel itself and the adjacent pixels.)

The line filter factors are specified with the parameters data O to data 8. The
positional relationship of these pixels is shown in the diagram below.

Data 1 | Data 2 | Data 3
Data 4 |DataO | Data5
Data 6 |Data7 | Data8

189

FILTSEL

Reference Section 2

FI LTSEL

The line filter factors for data 1 to data 8 can be setto 0, 1, +2, or 4. The line
filter factor for data O can also be set to +8.

The global constant parameter can be setto 0, 1, 2, 4, 8, or 16. The default value
is 1.

Set the sobel processing parameter to 0 to disable sobel integration, set a value
other than 0 to enable sobel integration. The default value is 0.

When sobel integration is enabled, the original image will undergo line filtering
and then sobel processing. Sobel integration is effective only when “2:
sharpened image” has been selected with the FILTER command.

FI LTer SELect

(Command)

190

Action

Format

Example

Description

Specifies the type of image filtering.
FI LTSEL type [, image type]
FILTSEL 2

The FILTSEL command specifies the type of image filtering. The image filtering
specified with this command is the same as the filtering selected through the
menu.

The type parameter specifies the type of filtering. Specify one of the values listed
below:

OFF

Weak smoothing

Strong smoothing

Edge enhancement level 1
Edge enhancement level 2
Edge enhancement level 3
Edge enhancement level 4
Edge enhancement level 5
Relief

. Vertical edges

10: Horizontal edges

11: All edges

CRONITAEWNREO

When the FILTSEL command is executed, the information set with the FILTER
and FILTDATA commands is overwritten and invalidated. When “9: Vertical
edges” or “10: Horizontal edges” is selected, the binary level (contents of look-up
table for binary conversion) is overwritten. The binary level must be set again.

The image type parameter determines whether the image is binary or raw. If nec-
essary, specify the image type according to the current image display. (The
default value is 0.)

0: Rawimage (LUT OFF)
1. Binary image (LUT ON)

GETMDATA Reference Section 2
FORNMAT FORMAT
(Command)

Action Formats a Memory Card.

Format FORMAT drive

Example FORMAT " C.”

Description The FORMAT command formats a Memory Card. When the FORMAT com-

GETMDATA

mand is executed, a prompt will appear (Are you sure? (Y/N)) to confirm that the
Memory Card will be initialized. Press Y to proceed or N to cancel.

GET Measur e DATA

(Command)
Action

Format
Example

Description

Obtains data generated by the MDATA function.

GETMDAT A data type, array name [, subscript]
GETMDATA 0, MD

The MDATA function obtains data one-by-one, and the GETMDATA command
obtains this data in a batch of 8 windows and stores the data in array variables.

The data type parameter specifies the type of data. Specify one of the values
listed below:

Area (pixel units)

Area after calibration

X center of gravity (pixel units)

X center of gravity after calibration

Y center of gravity (pixel units)

Y center of gravity after calibration

Axis angle (pixel units)

Axis angle after calibration

X center of gravity, Y center of gravity (pixel units)
. X center of gravity, Y center of gravity after calibration
10: All (pixel units)

11: All after calibration

©CRONITAEWNREO

The array name parameter indicates the array variables in which the data will be
stored. The number of array variables in the specified array must be declared
beforehand using the DIM command. (It is hot necessary to include qualifiers or
parentheses in the array name.)

The number of array variables declared in DIM command must be greater than
the number of data elements being obtained.

The first location in the array in which data will be stored can be specified in the
qualifier parameter. The default location is the beginning of the array.

When the data type parameter is set to 0, data will be stored as follows:

A(0): Areaof plane 0
A(1): Area of plane 1

A(7): Area of plane 7

191

GETVER Reference Section 2

When the data type parameter is set to 8, data will be stored as follows:

A(0): X center of gravity in plane 0
A(1): X center of gravity in plane 1

A(7): X center of gravity in plane 7
A(8): Y center of gravity in plane 0

A(15): Y center of gravity in plane 7
When the data type parameter is set to 10, data will be stored as follows:

A(0): Area of plane 0
A(1): Area of plane 1

A(7): Areaof plane 7
A(8): X center of gravity in plane 0

A(31): Axis angle in plane 7

GETVER GET VERsi on

(Function)
Action Obtains system version and other data.
Format GETVER (type)
Example MACHI NE=GETVER (0)
Description The GETVER function can determine the system version and other data. This

function can be used to create a single program that automatically compensates
for hardware and software differences so that it can be run on different systems.

The type parameter specifies the type of data that will be obtained, as shown in
the following table.

Type Data obtained Examples of returned values
0 Series-type 300 indicates the F300.
IMP Unit code 10: F300-C10EV2
11: F300-C11E
OVL version Actual version number, such as 1.03 or 2.00
System version Actual version number, such as 1.05 or 2.00

192

Reference Section 2

GVEUNC

G ay Menory i mage FUNCI I on

(Command)

HEl LL

Action

Format
Example

Description

Performs operations on two raw images.

GVFUNC operation, page#1, page#2 [, [X1]1 [, [Y1] [, [X2] [,Y2]IIl
GVFUNC 7,0, 1

GMFUNC performs an operation on two raw images within the rectangular re-
gion specified by start point (X1, Y1) and end point (X2, Y2). The result of the
operation is written to page number 2 of image memory.

The following ten operations are available. Specify the operation by setting the
operation parameter to the corresponding value from 0 to 9.

AND

OR

XOR

Addition 1 (Result set to 255 if greater than 255.)

Addition 2 (Remainder of results divided by 256 if greater than 255.)
Subtraction 1 (Result set to 0 if less than 0.)

Subtraction 2 (Remainder of results divided by 256 if less than 0.)
Maximum value

Minimum value

Absolute value (Absolute value of the difference of the two values.)

CRONITAEWNREO

Specify the desired image memory page numbers with page#1 and page#2.
The same page can be specified for both page humbers.

The operation will be performed within the rectangular region specified by start
point (X1, Y1) and end point (X2, Y2). The coordinates can be set in the range O
to 511. The default points are (0, 0) and (511, 511).

Hole FILL

(Command)

Action

Format

Example

Description

Fills holes in a binary image.

HFI LL [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, link evalua-
tion constant]]]]]

HFI LL O, 7,0,0, 100, 100
HFILL O, 7

The HFILL command fills holes in a binary image in image memory within the
region defined by (X1, Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane in which the binary
image will be processed.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be processed. The default points are (0, 0) and (511, 511).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

A “Vision error” will occur if the number of hole borderlines exceeds 255 or the
length of the hole’s borderline exceeds 4096.

193

..... Reference

Section 2

| PL

lnitial Program Loadi ng

(Command)

194

Action

Format

Example

Description

Sets the OVL boot-up mode. (Loads and executes the designated file.)

| PL [{o|1[file name}] [, [value 1] [, [value 2] [, [value 3] [, [value 4] [, [value 5] [,
[standard input device] [, standard output device]]]]]]]

IPL 1
| PL " SAMPLE”
I PL L I R R A) 1

The IPL command sets the OVL boot-up mode. The new settings are valid the
next time that OVL is booted up, and the settings are retained even when the
power is turned off.

The 0]1[file name parameters specify the OVL boot-up procedure used when
the power is turned on. (If a filename is specified, that file will be loaded and
executed automatically.)

0: OVL will not be booted automatically.
1: The program in the IMP Unit will be booted automatically.

The value 1 through value 5 parameters specify various OVL settings, as shown
below:

Value 1: Number of files that can be open simultaneously. (1 to 11)
Value 2: Array variable, character variable area (1K bytes to 62K bytes)
Value 3: User stack area (1K bytes or 2K bytes)

Value 4: Compiler area (2K bytes to 16K hytes)

Value 5: Number of image display lines (20 or 25)

The standard input device parameter specifies the standard input device used
when OVL has been started.

0: Keyboard
1: RS-232C

The standard output device parameter specifies the standard output device
used when OVL has been started.

0: Video monitor
1: RS-232C

The settings will be displayed if no parameters are entered. The factory settings
for these parameters are shown below:

Parameter Use Factory setting
Value 1 Number of files that can be open 11
Value 2 Array variable, character variable area 32 (K-bytes)
Value 3 User stack area 2 (K-bytes)
Value 4 Compiler area 8 (K-bytes)
Value 5 Number of image display lines 25
Standard input Standard input device 0 (Keyboard)
Standard output | Standard output device 0 (Video monitor)

Reference Section 2

LEVEL

LEVEL

(Command)
Action

Format

Example

Description

LSORT

Sets the binary level for each binary image plane.

LEVEL binary image plane#, lower limit, upper limit [, mode]

LEVEL -1, 128, 255
LEVEL O, 0, 255, XOR

The LEVEL command sets the binary level for each binary image plane.

Specify the binary image plane (0 to 7) for which the level is set with the binary
image plane# parameter. Set the binary image plane# to —1 to set all binary
image planes to the specified binary level.

The lower limit and upper limit parameters specify the range for the binary level.
Each parameter can be set from 0 to 511. When the level is within the range, the
pixel is given a value of 1 (usually white).

The mode parameter specifies the following operations. The default setting is
“overwrite”.

OR: set the specified range to pixel value 1 (white).

NOT: set the specified range to pixel value 0 (black).

XOR: reverse the specified range

Label SORT

(Command)
Action

Format

Example

Description

VASK3

Renumbers the assigned label numbers.

L SORT mode

LSORT 0O
LSORT 8

The LSORT command reorders and renumbers the labeled image data accord-
ing to the specified ordering mode. The mode parameter specifies one of the 10
ordering modes listed below.

Area, descending

Area, ascending

X center of gravity, descending

X center of gravity, ascending

Y center of gravity, descending

Y center of gravity, ascending

From upper left of screen, vertically
From lower right of screen, vertically
From upper left of screen, horizontally
From lower right of screen, horizontally

Be sure that the LABEL command has been executed before executing LSORT.

MASK 3x3

CONITAEWNREO

(Command)
Action

Format
Example
Description

Performs 3x3 mask filtering on raw images.

MASKS3 [page#], X1, Y1, X2, Y2, array name [, global factor]
MASK3 0, 100, 100, 200, 200, TABLE, 2

The MASK3 command performs 3x3 mask filtering on raw images in image
memory within the region defined by (X1, Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

195

MWMEAS

Reference Section 2

MAVEAS

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be processed. The default points are (1, 1) and (511, 511).
The coordinates can be set in the range 1 to 511.

The elements of the array can have values from -8 to +8. The following table
shows the relationship between the array elements and the pixels.

TABLE (1) |TABLE (2) |TABLE (3)
TABLE (4) |TABLE (0) |TABLE (5)
TABLE (6) |TABLE (7) |TABLE (8)

The global factor parameter can be setto 0, 1, 2, 4, 8, or 16. The default value is
1.

Mul ti pl e W ndow MEASur e

(Command)

196

Action

Format

Example

Description

Takes measurements of multiple windows.

MAWVEAS [page#], binary image plane#, pixel type [, [window operation] [,
[X compensation] [, [Y compensation]]], data type, data array

MAVMEAS O, 0, 1, 1, 0, O, O, MDAT

Takes measurements of characteristics within windows registered with the
MWSET command, and stores the results in array variables.

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane (0 to 7) in which the
measurements will be taken.

The pixel type parameter specifies whether black or white pixels will be mea-
sured. Set this parameter to 0 to specify black pixels. A setting other than 0 spec-
ifies white pixels.

The window operation parameter determines whether the measurement will be
made on the rectangular region defined in MWSET (window operation=0), or on
the result of an AND between this region and the content of window memory
(window operation=1).

The X compensation and Y compensation parameters can specify X and Y off-
sets from =512 to 511. The position compensation parameters cannot be used
when the window operation parameter is set to 0.

The data type parameter specifies the type of data that will be measured. Speci-
fy one of the values listed below:

Area (pixel units)

Area after calibration

X center of gravity (pixel units)

X center of gravity after calibration

Y center of gravity (pixel units)

Y center of gravity after calibration
Axis angle (pixel units)

Axis angle after calibration

X, Y center of gravity (pixel units)

X, Y center of gravity after calibration

CONITAEWNREO

The data array parameter indicates the name of the array variables in which the
data will be stored.

ON CONKEY GOSUB

Reference Section 2

MABET

Data will be stored in the array in the order that the windows were registered with
the MWSET command. When the data type parameter is set to X, Y center of
gravity measurement, data will be stored as follows:

1starray element. X center of gravity for window 0
2nd grray element: Y center of gravity for window 0
3rd array element: X center of gravity for window 1
4th array element: Y center of gravity for window 1

Array element 2n+1: X center of gravity for window n
Array element 2n+2: Y center of gravity for window n

Mul ti ple Wndow SET

(Command)
Action

Format

Example

Description

Registers windows for multiple-window measurements.

MABET binary image plane#, number of windows, X1 array, Y1 array,
X2 array, Y2 array

MABET 0, 10, X1, Y1, X2, Y2

The MWSET command registers windows for multiple-window measurements
by the MWMEAS command.

The binary image plane# parameter specifies the binary image plane (0 to 7) in
which the measurements will be taken.

The number of windows parameter specifies the number of windows that will be
registered.

The X1 and Y1 arrays define the coordinates of upper left corners of the windows
and the X2 and Y2 arrays define the coordinates of the lower right corners of the
windows. The coordinates must be within the range 0 to 511.

The number of array variables in the specified arrays must be declared before-
hand using the DIM command. (It is not necessary to include qualifiers or paren-
theses in the array name.)

The number of array variables declared in DIM must be greater than the number
of windows that are being registered.

ON CONKEY GOSUB ON CONsol e KEY GOSUB

(Command)
Action

Format

Example

Description

Specifies the starting line number of the interrupt subroutine called by pressing
the Console key.

ON CONKEY GOSUB line number or label

ON CONKEY GOSUB * CKEYI NT

The ON CONKEY GOSUB command specifies the starting line number of the
interrupt subroutine called by pressing the Console key. A label can be used
instead of a line number to specify the start of the interrupt subroutine.

The following commands are related to ON CONKEY GOSUB:

CONKEY ON
CONKEY OFF
CONKEY STOP

197

SCNJUDGE

Reference Section 2

RUNL2

RUN Length 2

(Function)
Action

Format
Example
Description

SCNJ UDGE

Performs high-speed processing on data obtained by the RUNL function.

RUNL2 (binary image plane#, Y1, Y2, data measured)
A=RUNL2 (0, 100, 200, 0)

The RUNL2 function processes the simple run length data to obtain more de-
tailed information. In order to use the RUNL2 function, the run function must be
turned on with the MMODE command and the simple run length data must be
measured.

The Y1 and Y2 parameters define the measurement range (on the Y-axis) and
must be within the range 0 to 479.

The data measured parameter specifies the type of data that will be measured.
Specify one of the values listed below:

Area

Number of runs

Average run length

Maximum run length

Minimum run length

Median run length

Y coordinate of maximum run length

Y coordinate of minimum run length

Y coordinate of median run length
Number of run groups

0: Average run group width

1: Maximum run group width

12: Minimum run group width

13: Median run group width

14: Y coordinate of maximum run group width
15: Y coordinate of minimum run group width
16: Y coordinate of median run group width

SCeNe JUDGEnment

RBOoooNOORr®O®NERO

(Function)
Action

Format
Example
Description

198

Obtains the criteria that were set in menu mode.

SCNJUDGE (scene number, binary image plane#, item, data type)
LO=SCNJUDGE (0, 0,0, 1)

The SCNJUDGE function obtains the criteria for measurement items that were
set in menu mode.

The scene number parameter specifies the scene number (0 to 15).
The binary image plane# parameter specifies the binary image plane (0 to 7).

The item parameter specifies the measurement item. Specify one of the values
listed below:

Area

X center of gravity

Y center of gravity

Axis angle

Edge angle

X center coordinate

Y center coordinate
Angle of inclination
Cross point X coordinate
Cross point Y coordinate

Reference Section 2

SCNSTAND

The data type parameter specifies the type of data:

0: Upper limit
1: Lower limit
2: Unit

When “2: Unit” is specified for the data type, the SCNJUDGE function will return
one of the following values:

% of reference image

Pixel difference to reference image (pixel units)
Pixel difference to reference image after calibration
Angle difference to reference image

Actual work measurement in pixels (pixel units)
Actual work measurement after calibration

Actual work measurement in degrees

SCeNe STANDar d

(Function)
Action

Format
Example
Description

SOBEL

Obtains the reference image data that were set in menu mode.

SCNSTAND (scene number, binary image plane#, data type)
AR=SCNSTAND (0, 0, 0)

The SCNSTAND function obtains the reference image data that were set in
menu mode.

The scene number parameter specifies the scene number (0 to 15).
The binary image plane# parameter specifies the binary image plane (0 to 7).

The data type parameter specifies the type of data. Specify one of the values
listed below:

Area

X center of gravity

Y center of gravity

Main axis angle

Edge angle

X center coordinate

Y center coordinate

Angle of inclination

X coordinate of cross point

;Y coordinate of cross point

10: Reference X coordinate for X compensation
11: Reference Y coordinate for Y compensation

CONITAEWNREO

SOBEL

(Command)
Action

Format
Example

Description

Performs sobel processing.

SOBEL [[page# [, [X1] [, [Y2] [, [X2] [, Y2III]
SOBEL , 100, 100, 200, 200

The SOBEL command performs sobel processing within the rectangular region
defined by (X1, Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be processed. The coordinates can be set in the range 1 to
510. The default points are (1, 1) and (510, 510).

199

WDILA Reference Section 2
SZO0M Shadi ng _nenory ZOOM
(Command)
Action Zooms (enlarges or reduces) the shading memory.
Format SZOOM [zoom factor [, X reference coordinate, Y reference coordinate]]
Example SZOOM 4
Description The SZOOM command zooms (enlarges or reduces) the shading memory.
The zoom factor parameter specifies the factor by which the shading memory
will be magnified (0.25 to 512.00). The default zoom factor is 1.
The X and Y reference coordinates define the point of reference for zooming.
The default point is (0,0).
(Command)
Action Reduces line thickness for a binary image in image memory.
Format THI N [page#], binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, link evalua-
tion constant]]]]]
Example THIN O, 7,0, 0, 100, 200
THIN O, 7
Description The THIN command reduces line thickness for binary images in image memory

VWI LA

within the rectangular region defined by (X1, Y1) and (X2, Y2).

The page# specifies the page number (0 or 1) in image memory. The default
page number is 0.

The binary image plane# specifies the binary image plane in which the binary
image will be processed.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be processed. The coordinates can be set in the range 0 to
511. The default points are (0, 0) and (511, 511).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

W ndow DI LAt e

(Command)
Action

Format

Example

Description

200

Enlarges the binary image in window memory.

VDI LA binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [.[link evaluation
constant] [, enlargements]]]]]]

WDl LA 7,0, 0, 100, 100
WDI LA 7,0

The WDILA command enlarges the binary image in window memory within the
region defined by (X1, Y1) and (X2, Y2).

The binary image plane# specifies the binary image plane in which the binary
image will be reduced.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be enlarged. The default points are (1, 1) and (510, 510).
The coordinates can be set in the range 1 to 510.

Reference Section 2

VERGCS

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

The enlargements setting specifies the number of times that the image will be
enlarged. The default value is 1.

When a pixel within the rectangular region has a value of 0 and the adjacent pixel
has a value of 1, enlargement processing will replace it with a value of 1.

The specified rectangular region cannot be exceeded in enlargement. Enlarge-
ment processing will end before the enlargements setting is reached if it is not
possible to enlarge the image further.

W ndow ERQCSI on

(Command)

Action

Format

Example

Description

W OOM

Reduces the binary image in window memory.

VERGCS binary image plane# [, [X1] [, [Y1] [, [X2] [, [Y2] [, [link evaluation
constant] [, reductions]]]]]]

VEERGCS 7, 0, 0, 100, 100
VEERCS 7, 0

Reduces the binary image in window memory within the region defined by (X1,
Y1) and (X2, Y2).

The binary image plane# specifies the binary image plane in which the binary
image will be reduced.

The start point (X1, Y1) and end point (X2, Y2) can be input to specify a rectan-
gular region that will be reduced. The coordinates can be set in the range 1 to
510. The default points are (1, 1) and (510, 510).

The link evaluation constant specifies the number of linkages that will be used in
processing. There will be 8 linkages when the link evaluation constant=0, and 4
linkages for any setting besides 0. The default value is 0.

The reductions setting specifies the number of times that the image will be re-
duced. The default value is 1.

When a pixel within the rectangular region has a value of 1 and the adjacent pixel
has a value of 0, reduction processing will replace it with a value of 0.

The specified rectangular region cannot be exceeded in reduction. Reduction
processing will end before the reductions setting is reached if it is not possible to
reduce the image further.

W ndow nenory Z0OOM

(Command)

Action

Format
Example

Description

Zooms (enlarges or reduces) the window memory.

WZ.OOM [zoom factor [, X reference coordinate, Y reference coordinate]]
WZOOM 4

The WZOOM command zooms (enlarges or reduces) the window memory.

The zoom factor parameter specifies the factor by which the window memory will
be magnified (0.25 to 512.00). The default zoom factor is 1.

The X and Y reference coordinates define the point of reference for zooming.
The default point is (0,0).

201

WZOO0OM Reference Section 2

When the WZOOM command is executed, WSCROLL 0,0 is executed internal-
ly. After the WZOOM command has been executed, the scroll quantities and

rotation center specified with the WSCROLL command are specified for the
coordinate space after zooming.

Measurements can be made on the zoomed window image (the image dis-
played on the screen).

202

SECTION 3
Sample Programs

This section provides sample programs using the new Version 2.00 commands and functions.

3-1 Determination of Multiple Windows ON/OFF Statusccoviivenn... 204
3-1-1 INtrodUCHiON ... o e 204
3-1-2 PIOg A ot 204
3-2 Shape Inspection using Window Enlargement/Reduction 208
3-2-1 INtrodUCHiON . ..ot 208
3-2-2 PrOOIaM .ot e 208

203

Determination of Multiple Windows' ON/OFF Status Section 3-1

3-1
3-1-1

Determination of Multiple Windows’ ON/OFF Status

Introduction

Measurement

Reference Image Registration

1,2, 3.

3-1-2 Program

204

10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240

This program uses the multiple-window functions to determine the ON/OFF sta-
tus of each window. Perform the operations below in menu mode beforehand.

1. Set up several windows for multiple-window use in window plane 0.

2. Set up a window in window plane 7 for position compensation.

3. Set the binary level.

4. If necessary, register a reference image for position compensation.
Once the program has been executed, the ON/OFF status of each window can
be determined using the following operations:

Measure when the Console’s Enter Key is pressed or the STEP signal goes ON.
Measure the area of black pixels in the window. The percentage of black pixels
should be greater than 50% in each window. The results are output to the screen
and Parallel I/O Unit. The output to the Parallel I/O Unit will be ON if the result for
that window is OK, and OFF if the result is not NG.

Register the reference image when the Console’s Shift+Enter Keys are pressed
or DI5 is ON and the STEP signal goes ON. Window plane 7’s center of gravity
coordinates are recorded as the reference position.

khkkkhkkhkhhhhkhkhkkkhkhkhkhhhhhhhhhhhkhhhhhhhhhhhhdhdkhkhhhddhhhhkkkhkhkhhdhhhhxx

(c) Copyright OVRON Co. 1992
Al Rights Reserved

F300 Sanpl e Program

Mul ti pl e-wi ndow sanpl e program #1
Det ermi nes whether the area in each window is OK/ NG

It

is Kif 50%or nore of the area is black.

Results output to the screen and Parallel 1/Q
Set the follow ng conditions in nenu node for scene O:
W ndow plane 0: Miltiple wi ndows
W ndow pl ane 7: W ndow for position conpensation
Procedure details

hhkkkhkkhkkhhkkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhkhhhdhhhhhhhhdrhhrdhrkdrddxx

Dat a definitions

CLEAR

W SCN=0 ' Scene nunber

W MAX=255 "Max. nunber of w ndows

N=W MAX

DM W X1% N) , W Y1% N) "Start points defining multiple w ndows
DIM W X2% N) , W Y29% N) "End points defining nultiple w ndows
DI M W VWAY% N) "Areas of nultiple w ndows

DI M W AR% N) "Reference areas of nultiple w ndows

Determination of Multiple Windows' ON/OFF Status Section 3-1

10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370
10380
10390
10400
10410
10420
10430
10440
10450
10460
10470
10480
10490
10500
10510
10520
10530
10540
10550
10560
10570
10580
10590
10600
10610
10620
10630
10640
10650
10660
10670
10680
10690
10700

DMWLOAN), WHI % N) "Upper/lower limts for area discr.

DM WJIGN 32) "Storage of discrimnation results

W LO=50 "Lower limt reference % for area discr.
W HI =100 "Upper Iimt reference % for area discr.
W BW=0 "Bl ack/ white specification of plane 0

W BW =0 "Bl ack/white specification of plane 7

W SX=0: W SY=0 "Reference inmage X Y

W DX=0: W DY=0 " Conpensation X Y

"Mai n process

*NMAI' N

GOosuB *HWNET
GOSUB *I NI Tl AL
GOSUB *MAN NDSET

ON | NTR GOSUB *I NTR1: | NTR ON
ON CONKEY GOSUB *I NTR2: CONKEY ON

WHI LE (1)
VEEND
"Initialization process
*I NI TI AL
CONSOLE , , 0: LOCATE , , 0
DI SPLAY 31 " Di spl ays the canera inage
W NDOW W SCN " W ndow dr awi ng
CAMVODE 1 "Qutput of frane buffer contents
FLASH 2 "Shutter with STEP synchroni zation
MMODE 7, W BW, 1 " Measurenment node for plane 7
W SX=SCNSTAND(W SCN, 7, 1) "Cbtain reference X center of gravity
W SY=SCNSTAND(W SCN, 7, 2) "Cbtain reference Y center of gravity
RETURN
"Hardware initialization

*HWNIT

CAVERA 0: CAMMODE 0: FLASH 1: FI LTERIN 0: FILTER 0, 1, 0
MASKBI T 2,0, 0: MASKBI T 3, 0, 0: MASKBI T 4, 0, 0
CLS 0: CLS 1:CLS 2: CLS 3: SBANK 1: CLS 4: SBANK 0: CLS 4
LEVEL -1, 128, 255: WsCROLL 0, 0: SSCROLL 0, 0: WZOOM SZOOM
DI M LUTDATAO% 256) , LUTDATALY% 256)
FOR | =0 TO 255

LUTDATAO% |) =(1 *160) / 255: LUTDATAL% |) =(| *192) / 255
NEXT
SETDLUT 0, LUTDATA0% SETDLUT 1, LUTDATA1%
ERASE LUTDATA0% LUTDATAL%

205

Determination of Multiple Windows' ON/OFF Status Section 3-1

10710 FOR 1=0 TO 6

10720 SETDLVL |

10730 NEXT

10740 DI SPLAY 16: WDl SP -1, 0, 0: BACKDI SP 0
10750 RETURN

10760
10770 *Mul ti pl e wi ndow coordi nate, area discrimnation value settings
10780
10790 *MA NDSET

10800 FILTERIN 1: CLS 3: BACKDI SP 1,0 ' Di splay wi ndow only
10810 Wl SP -1,0,0: W SP 0, 1,1 "Di splay plane 0
10820 LEVEL -1, 511, 511

10830 RMODE 0, 0, 1: MEASURE: LABEL: LSORT 8

10840 W MAX=LNUM

10850 | F W MAX<1 THEN

10860 PRI NT "W NDOANs ARE NOT SET.”

10870 END

10880 END I F

10890 FOR | =1 TO W MAX "Cbtain circunscribed coordinates
10900 W WA% | —1) =LDATA(I, 0)

10910 W X19% | —1) =LDATA(I, 7) : W Y1% | —1) =LDATA(I , 8)

10920 W X29% | —1) =LDATA(I, 9) : W Y2% | —1) =LDATA(I , 10)

10930 NEXT

10940 MABET 0, W MAX, WX1% WY1% WX2% W Y2%
10950 FILTERI N 0: CLS 3: BACKDI SP 0

10960 WISP -1,1,1

10970 SCNLUT W SCN "Returns binary |evel

10980 FOR 1=0 TO W MAX-1 "Sets the area discrimnation val ue
10990 WLOA) =WWAK |) *W LO 100

11090 WHI 9% 1)=WWA%I)*WH /100+1

11010 NEXT
11020 RETURN

11030

11040 ' STEP interrupt process

11050

11060 *I NTR1

11070 I F PIN(5) THEN

11080 GOSUB *STANDMEAS "Ref erence registration
11090 ELSE

11110 GOSUB *MEAS " Measur enment

11110 END | F
11120 RETURN

11130 °

11140 ' Consol e Key interrupt process
11150 °

11160 *I NTR2

206

Determination of Multiple Windows' ON/OFF Status Section 3-1

11170 K=KEYI N(0)

11180 | F K=&H90 THEN GOSUB *STANDMEAS ' Shift+Enter Reference regist.
11190 | F K=&H10 THEN GOSUB *MEAS "Enter Measurenent

11200 RETURN

11210 °

11220 ' Reference image registration (Records center of gravity coordinates for position conpensation.)
11230

11240 *STANDMEAS

11250 WSCROLL 0, 0

11260 MEASURE

11270 W SX=NMDATA(7, 2)

11280 W SY=NDATA(7, 4)

11290 LOCATE 0, 0: PRI NT "Reference registration conpleted.”
11300 RETURN

11310 °

11320 ’ Measur enent

11330 °

11340 *NMEAS

11350 TI MD&=TI MER

11360 WSCROLL 0, 0 "Moves to wi ndow s origin.

11370 EVENTIN 1,0, 1: MEASURE ' Center of gravity neasurenent
11380 W DX=NMDATA(7, 2) —W SX "Position conpensation cal cul ation
11390 W DY=MDATA(7, 4) -W SY

11400 WSCROLL W DX, W DY "Position conpensation

11410 MAWEAS 0, 0, WBW), 1, WDX, WDY, 0, WAR%

11420 ARRYFUNC 11, WMAX, WJIG, WAR%N WLO%H WH %

11430 TI M&=TI MER-TI MD&

11440 LOCATE 0, 0: PRI NT USI NG " Processi ng ti me=####ms”; TI M&*10
11450 GOsUB *JUDGDI SP

11460 GOsUB *JUDGOUT

11470 RETURN

11480 °
11490 ’'Di scrim nation results display process
11500
11510 *JUDGDI SP

11520 FOR I =0 TO W MAX-1

11530 J=W JG7(FI X(1/32)) AND 2°(1 MOD 32)
11540 IF J THEN

11550 COLOR 0: J$=" K’

11560 ELSE

11570 COLOR 7: J$=" NG’

11580 END | F

11590 PRINT USING "No ### @;1,J$

11600 COLOR 0

11610 NEXT
11620 RETURN

207

Shape | nspection using Window Enlargement/Reduction Section 3-2

3-2
3-2-1

11630

11640 'Discrimnation results term nal output process

11650
11660
11670
11680
11690
11700

*JUDGOUT

FOR 1=0 TO FI X((W MAX-1) / 32)
DOUT W JG&(1), 0, 32

NEXT
RETURN

Shape Inspection using Window Enlargement/Reduction

Introduction

Measurement

1,2, 3.

The window enlargement/reduction functions are used to determine whether a
work piece’s shape matches the shape of a reference work piece. Perform the
operations below in menu mode beforehand.

1. Set up a window in window plane O for use as a measurement region. (Do
not specify the entire screen, however.)

2. Set the binary level.

Once the program has been executed, the following operations can be used to
determine if a work piece is acceptable (OK) or unacceptable (NG):

Measure when the Console’s Enter Key is pressed or the STEP signal goes ON.
If the work piece is larger than the reference piece, the blurred area is measured.
If the work piece is smaller than the reference piece, omission inspection is mea-
sured. The blurred area and omission area are compared to the reference area
to determine whether the work piece is acceptable or not.

Reference Image Registration Register the reference image when the Console’s Shift+Enter Keys are pressed

3-2-2 Program

208

10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150

or DI5 is ON and the STEP signal goes ON. A window for blurring inspection is
automatically drawn in window plane 7, and a window for omission inspection is
automatically drawn in window plane 6.

R S R

' (c) Copyri ght OVRON Co. 1992

’ Al Rights Reserved

' F300 Sanpl e Program

' Shape | nspection using Wndow Zoom ng

" Useful for operations such as character identification.
" Before program execution, set up (in nenu node) a wi ndow in
" wi ndow plane 0 for use as a processing region.

' W ndow pl ane 7: Blurring inspection

’ W ndow pl ane 6: Qmi ssion inspection

' W ndow pl ane 0: Processing region

RS SRS S SRR ST EEEEE LRSS S EEEEEEEEEE R R R R TSRS
DCNT=3 "Number of enlargenments

ECNT=1 "Nunber of reductions

JDGr=10 "Nunber of pixels for determning blurring

Shape | nspection using Window Enlargement/Reduction

Section 3-2
10160 JDG6=10 "Nunber of pixels for determ ning om ssion
10170 BWEO " Pi xel s measured (0=bl ack, 1=white)
10180
10190 ' Mai n process
10200 °’
10210 *MAIN
10220 GOosSUB *HW NI T
10230 GOSUB *I NI TI AL
10240 GOSUB *W NDAREA
10250 GOSUB *W NDSET
10260 ON | NTR GOSUB *I NTR1: | NTR ON
10270 ON CONKEY GOSUB *| NTR2: CONKEY ON
10280 VWH LE (1)
10290 \END
10300
10310 'Initialization process
10320
10330 *I NI TI AL
10340 CONSCLE , , 0: LOCATE , , 0
10350 DI SPLAY 31,0 "Binary display wthin w ndow
10360 CAMVODE 1 "Qutput of frane buffer contents
10370 FLASH 2 "Shutter with STEP synchronization
10380 W NDOW 0 "Draws wi ndow of scene O
10390 MMODE 7, BW 1 " Measurement node for blurring
10400 MMODE 6, NOT BW 1 " Measur ement node for om ssion
10410 RETURN
10420
10430 ' Establi shment of the measurenent processing region
10440
10450 *W NDAREA
10460 FILTERI N 1: BACKDI SP 1, 0 " Di spl ay wi ndow only
10470 WDISP -1,0,0: WDISP 0, 1,1 "Di splay plane 0
10480 LEVEL -1, 511, 511
10490 RMODE O, O, 1: MEASURE: LABEL: LSORT 8
10500 W MAX=LNUM
10510 | F WMAX<1 THEN
10520 PRI NT "W NDOAS ARE NOT SET.”
10530 END
10540 END | F
10550 LSORT O
10560 W X1=LDATA(1, 7): W Y1=LDATA(1,8) 'Set neasurenent region.
10570 W X2=LDATA(1, 9) : W Y2=LDATA(1, 10)
10580 BOX WX1, WY1, WX2, WY2, 1,,,1
10590 FILTERI N O: BACKDI SP 0: SCNLUT 0
10600 WISP -1,0,0: WISP 6,1, 1: WDISP 7,1,1
10610 RETURN

209

Shape | nspection using Window Enlargement/Reduction Section 3-2
10620 °’
10630 'Hardware initialization
10640 °’
10650 *HW NI T
10660 CAMVERA 0: CAMMCDE 0O: FLASH 1: FILTERIN O: FILTER 0,1, 0
10670 MASKBI T 2,0,0: MASKBIT 3,0,0: MASKBIT 4,0,0
10680 CLS 0: CLS 1:CLS 2:CLS 3: SBANK 1: CLS 4: SBANK 0: CLS 4
10690 LEVEL -1, 128, 255: WSCROLL 0, 0: SSCROLL 0, 0: WwOOM SZOOM
10700 DI M LUTDATAO0% 256) , LUTDATA1% 256)
10710 FOR | =0 TO 255
10720 LUTDATAO%{ |) =(1 *160) / 255: LUTDATAL% |) =(| *192) / 255:
10730 NEXT
10740 SETDLUT 0, LUTDATAO% SETDLUT 1, LUTDATA1%
10750 ERASE LUTDATA0% LUTDATA1%
10760 FOR I=0 TO 6
10770 SETDLVL |
10780 NEXT
10790 DI SPLAY 16: WDI SP -1, 0, 0: BACKDI SP 0
10800 RETURN
10810
10820 ' STEP interrupt process
10830
10840 *I NTR1
10850 I F PIN(5) THEN
10860 GOsUB *W NDSET "W ndow set up
10870 ELSE
10880 GOSUB *MEAS " Measur enent
10890 END | F
10900 RETURN
10910
10920 ' Consol e Key interrupt process
10930 °’
10940 *I NTR2
10950 K=KEYI N(0)
10960 | F K=&H90 THEN GOSUB *W NDSET ' Shift+Enter W ndow set up
10970 | F K=&H10 THEN GOSUB *MEAS "Enter Measurenent
10980 RETURN
10990
11090 ' Measurenment w ndow setup
11010
11020 *W NDSET
11030 MASKBI T 2,0,1: CLS 2: MASKBIT 2,0,0 "Del etes other than w ndow O
11040 *LLOOP
11050 RMODE 0, BW 1
11060 MEASURE
11070 LABEL

210

Shape | nspection using Window Enlargement/Reduction Section 3-2
11080 I F LNUMK1 THEN PRI NT " ERRO': GOTO *LLOOP
11090 FOR | =1 TO LNUM
11100 LPUTIMG 1,2,0,7 "Draws figure in wi ndow mem
11110 NEXT
11120 WDILA 7, WX1, WY1, WX2, WY2,,6 DCNT
11130 MASKBI T 2, 0, &H7F " Masks ot her than plane 7

11140 BOX W X1, WY1, WX2, WY2 2, 0, XOR ’'Reverses w ndow nenory

11150 MASKBIT 2,0,0
11160 FOR I =1 TO LNuM

11170 LPUTIMG 1,2,0,6 "Draws figure in wi ndow mem

11180 NEXT
11190 VERCS 6, W X1, WY1, WX2, WY2,, ECNT
11200 RETURN
11210

11220 ' Measurenment process
11230 °

11240 *MEAS

11250 LOCATE 0,0
11260 MEASURE
11270 A7=NMDATA(7, 0)

11280 | F A7>JDG/ THEN J7%$="NG' ELSE J7$%$=" K"
11290 AB=NDATA(6, 0)
11300 | F A6>JDG THEN J6$="NG ELSE J6%$=" K"

11310 PRI NT USI NG "Bl urred pixel s=###### @: A7,J7$
11320 PRINT USING "QOritted pixel s=###### @ : A6, J6$
11330 RETURN

211

Appendix A
Table of Error Messages

Error message Error

code

Access deni ed 85
Application error (polish) 101
Application error (accum 102
Bad drive specification 70
Bad file nane 56
Bad file nunber 52
Can’t continue 17
CASE wi t hout END SELECT 124
CASE wi t hout SELECT 121
Channel nunber error 202
Checksum error 117
Conpile timng error 119
DEF FN wi t hout END DEF 134
Direct statenment in file 57
Di sk full 68
Disk I1/O error 64
Di sk of fline 62
Di vi sion by zero 11
DO wi t hout LOOP 135
Duplicate definition 10
Duplicate | abel 31
ELSE |F without END I F 129
ELSE IF without IF 125
ELSE wi t hout END I F 130
ELSE wit hout I|F 126
END DEF wi t hout DEF FN 120
END I F without IF 127
END SELECT wi t hout SELECT 122
END SUB wi t hout SUB 133
EXI T wi t hout DEF 138
EXIT wi t hout DO 141
EXIT without FOR 140
EXI T wit hout SUB 139
Feature not avail abl e 33
FI ELD overfl ow 50
File al ready exi st 65
Fil e al ready open 54
File not found 53
File not open 60
File wite protect 61
FOR wi t hout NEXT 26
IF without END I F 128
Il'legal direct 12
Il'legal function call 5
Il'legal junp 137
| nput past end 55
Li ne buffer overflow 23
Local variable overflow 131
LOOP wi t hout DO 136
M ssi ng oper and 22
NEXT wit hout FOR 1
No RESUME 19

213

Table of Error Messages

Appendix A

214

Error message Error

code

Qut of conpile work space 110
Qut of DATA 4
Qut of menory 7
Qut of string space 14
ov 100
Overfl ow 6
Par amet er overfl ow 118
Pat h not found 76
Pat h/ Fil e access error 75
Renanme across di sks 73
RESUME wi t hout error 20
RETURN wi t hout GOSUB 3
SELECT wi t hout END SELECT 123
Sequential 1/0O only 59
String too |ong 15
SUB wi t hout END SUB 132
Subscri pt out of range 9
Syntax error 2
Type m snat ch 13
Undef i ned | abel 32
Undefined |ine nunber 8
Undefi ned user function 18
Unit error 201
Unprintable error 99
Vi sion error 200
VEEND wi t hout WHI LE 30
VWHI LE wi t hout WEND 29

Appendix B

Reserved Words

Reserved words

ABS AKCNV$ ALL APPEND
ARC AS ASC ATN
ATTR$ AUTO AUTCOLVL

BACKDI SP BASE BCOPY BCOPY2
BEEP BLOAD BOX BSAVE
BUSY

CALL CAMCHK CAMERA CAMMODE
CANCEL CASE CDBL CHAI'N
CHANGE CHDI R CHR$ CI NT

Cl RCLE CLEAR CLNG CLGSE
CLS COLOR COLOR@ coMm
COMVON CONSOLE CONT corY
cos CSNG CSRLI N CURSCR
CvD Cvi CvL Cvs
DATA DATES$ DCASE DEF
DEFDBL DEFI NE DEFLNG DEFSNG
DEFSTR DELETE DENY DEVI CE
DGOTO DM DI N DI SPLAY
DNEXT DO DoUT DSA
DSKF

EDI T ELLI PSE ELSE ELSEI F
END ENHANCE EOF ERASE
ERL ERR ERRMSG ERROR
ERROUT EVENTI N EXIT EXP

FI ELD FI LES FI LTDATA FI LTER
FI LTERI N FI ND FI X FLASH
FN FOR FRE

GATE GCOPY GCOPY2 GET
GET@ GETBLUT GETDLUT GETDLVL
GETLUT GosuB (€] Goro
HELP HEX$ H STGRAM

I F | MALOAD | MGSAVE I NKEY$
I NPUT I NPUT$ I NSTR I NT

I NTR I PL

JI S$

KACNV$ KEXT$ KEY KEYI N
KI LL KI NPUT KI NSTR KLEN
KM D$ KNJ$ KPLOAD KPCS
KTYPE

LABLE LBCOUND LCASES$ LDATA
LEFTS$ LEN LET LEVEL
LFI LES LHELP LI NE LI ST
LLI ST LNUM LOAD LoC
LOCATE LOF LOG LOOP
LPO NT LPCS LPRI NT LPUTI MG
LSET LSCORT LTRI Mp

MASKBI T VDATA VDATA2 MVEASURE
MENU MERGE M D$ MKDI R
MKD$ MKI $ MKL$ MKS$
MMVODE MON

NAME NEW NPl ECE

215

Reserved Words Appendix B
Reserved words

o) OCT$ ON OFF OPEN
OPTI ON QUTPUT

P PEEK Pl ECE$ PI N PO NT
POKE POLYGON POLYLI NE PCS
POUT PRI NT PSET PUT
PUT@

R RANDOM ZE RDATA READ REM
RENUM REPEAT REPLACE RESTORE
RESUMVE RETURN Rl GHT$ RVDI R
RMCDE RND RNEXT RSET
RTRI M5 RUN RUNL

S SAVE SBACK SCAN SCANSET
SCNCAM SCNCALI B SCNJUDG SCNLEVEL
SCNLOAD SCNLUT SCNSAVE SDATAL
SDATA2 SEARCH SEGPTR SELECT
SET SETBLUT SETDLUT SETDLVL
SETLUT SFTBLUT SFTLUT SN
SIN SPACE$ SPC SPCLOSE
SPLI NE SQR SSCROLL STEP
STOP STR$ STRCHK STRI NG$
STRMODE SuB swap SYSTEM

T TAB TAN TI VES TI MER
THEN TO TROFF TRON

U UBOUND UCASE$ UNTI L USI NG
USR USRO USRL USR2
USR3 USR4 USR5 USR6
USR7 USR8 USR9

% VAL VARPTR VDWAI T VI DEO N
VENUS

W |WAIT WDI SP VEND WHI LE
W DTH W NDOW WPBI T VR TE
WSCROLL

216

Appendix C
Induction Functions

(P# =n = 3.14159265358979)

Function Induction formula
log a X LOG(X)/LOG(a)
sec X 1/COS(X)
cosec X 1/SIN(X)
cot X LTAN(X)
sin~1 X ATN(X/SQR(-X*X+1))
cos™1 X —ATN(X/SQR(=X*X+1))+P#/2
sec™! X ATN(SQR(X*X—1)+(SGN(X)—1)* P#/2
cosec1 X ATN(L/SQR(X* X—1)+(SGN(X)—-1)* P#/2
cotl X —ATN(X)+P#/2
sinh X (EXP(X)-EXP(=X))/2
cosh X (EXP(X)+EXP(=X))/2
tanh X —EXP(=X)/(EXP(X)+EXP(=X))* 2+1
sech X 2/(EXP(X)+EXP(=X))
cosech X 2/(EXP(X)—-EXP(—X))
coth X EXP(=X)/(EXP(X)—EXP(=X))*2+1
sinh—1 X LOG(X+SQR(X*X+1))
cosh™1 X LOG(X+SQR(X*X-1))
tanh—1 X LOG((1+X)/(1-X))/2
sech™1 X LOG(SQR(=X*X+1)+1)+1/X
cosech™1 X LOG((SGN(X)* SQR(X*X+1)+1)/X))
coth~1 X LOG((X+1)/(X=1))/2

217

| ndex

A BOX, 59

BUSY, 59
ABS, 54
AKCNVS$, 54 C
alphabetical listing, of version 2.00 functions & commands,

171 CALL, 60
ARC, 54 CAMCHK, 60
arguments, ?1 . CAMERA, 60
array operations, using ARRYFUNC, 175, 184 camera synchronization, setting with CAMSYNC, 181, 186
ARRYFUNC, 184 CAMMODE, 60
ASC, 55 CAMSYNC, 186
ATN, 55 CDBL, 61
ATTR, 55 CHAIN, 61
AUTO, 56 CHANGE, 62
AUTOLVL, 56 character strings, 21

characters, 20
B CHDIR, 62
CHRS, 63
BACKDISP, 56
CINT, 63
BATCHK, 185
. . CIRCLE, 64
BCD, converting to binary, 180, 185
CLEAR, 65
BCDTOBIN, 185
CLNG, 65
BCOPY, 57
CLOSE, 65
BCOPY 2, 58
CLS, 66
BEDGE, 185
COLOR, 66
BEEP, 58
COLOR@, 66

binary, converting to BCD, 180, 186

.) COM ON/OFF/STOR, 67
binary image planes, memory, 43

command

binary images ARC, 54
deleting exterior graphics, 188 ARRﬁ(FUNC 184
eliminating isolated points, 188 AUTO, 56
enlarging in window memory, 200 BACKbISP, 56
expanding, 187 BCOPY, 57
filling holesin, 193 BCOPY?2, 58
logic operations between, 175, 186 BEDGE, ’185
processing, 174 BEEP, 58
reducing, 189 BMFUNC, 186
reducing in window memory, 201 BOX, 59
reducing line thickness, 200 BUSY, 59
setting binary level, 195 CALL, 60

binary level CAMERA, 60
setting, 195 CAMMODE, 60
setting range with version 2.00, 182 CAMSYNC, 186

CHAIN, 61

BINTOBCD, 186 CHANGE, 62

block diagrams, 40 CHDIR, 62

CIRCLE, 64
BMFUNC, 186 CLEAR, 65
boot-up mode, setting, 194 CLOSE, 65

219

I ndex

CLS, 66 GOTO, 9

COLOR, 66 HELP, 96

COLOR@), 66 HEL P ON/OFF/STOP, 96
COM ON/OFF/STOP, 67 HFILL, 193

COMMON, 67 HISTGRAM, 97
CONKEY ON/OFF/STOP, 187 IF.GOTO-EL SE, 98
CONSOLE, 68 IF. THEN-EL SE, 98
CONT, 68 IF.. THEN—EL SEIF-EL SE-END IF, 99
CURSOR, 69 IMGLOAD, 99

DATA, 72 IMGSAVE, 100

DEFFN, 73 INPUT, 101

DEF FN...END DEF, 74 INPUT WAIT, 102
DEFDBL, 74 INPUT#, 101

DEFINT, 74 INTR ON/OFF/STOP, 104
DEFLNG, 75 IPL, 104, 194

DEFSNG, 75 KEY, 106

DEFSTR, 75 KEY LIST, 106
DELETE, 76 KEY ON/OFF/STOP, 106
DEVICE, 76 KILL, 107

DILA, 187 KINPUT, 108

DIM, 76 KPLOAD, 110
DISPLAY, 77 LABEL, 111

DO REPEAT-LOOP, 79 LET, 113

DO UNTIL-LOORP, 80 LEVEL, 114, 195

DO WHILE-LOOR, 80 LINE, 114

DO-L OOP REPEAT, 78 LINEINPUT, 115

LINE INPUT WAIT, 116

DO-LOOP UNTIL, 78 LINE INPUT#, 116

DO-LOOP WHILE, 79

LIST, 116
, LOCATE, 118

EEI',\TA' 8118 o LPUTIMG, 119

, LSET, 120
ELLIPSE, 82 L SOR’T’ 120, 195
END, 82 MASK3, 195
ENHANCE, 83 MASKBIT, 120
ERASE, 83 MEASURE, 122
EROS, 189 MENU, 122
ERRMSG, 84 MERGE, 122
ERROR, 84 MKDIR, 124
ERROUT, 85 MMODE, 125
EVENTIN, 85 MWMEAS, 196
EXIT DEF/DO/FOR/SUB, 86 MWSET, 197
FIELD #, 87 NAME, 126
FILES, 88 NEW, 126
FILTDATA, 88, 189 ON COM GOSUB, 127
FILTER, 88 ON CONKEY GOSUB, 197
FILTERIN, 89 ON ERROR GOTO, 128
FILTSEL, 190 ON GOSUB, 130
FIND, 89 ON GOTO, 131
FLASH, 90 ON HELP GOSUB, 128
FOR..TO..STEP-NEXT, 91 ON INTR GOSUB, 128
FORMAT, 191 ON KEY GOSUB, 129
GATE, 91 ON STOP GOSUB, 129
GCOPY, 92 ON TIME$ GOSUB, 130
GCOPY2, 92 OPEN(1), 131
GET #, 93 OPEN(2), 132
GET@, 93 OPTION BASE, 132
GETBLUT, 94 POLYGON, 134
GETDLUT, 94 POLYLINE, 134
GETDLVL, 95 POUT, 135
GETLUT, 95 PRINT, 135
GETMDATA, 191 PRINT #, 137
GMFUNC, 193 PRINT USING, 136
GOSUB, 95 PRINT# USING, 138

220

I ndex

PSET, 138

PUT #, 139

PUT@, 139
RANDOMIZE, 140
READ, 140

REM, 141
RENUM, 141
REPLACE, 141
RESTORE, 142
RESUME, 142
RETURN, 142
RMDIR, 143
RMODE, 144
RSET, 145

RUN, 145

SAVE, 146
SBANK, 146
SCAN, 147
SCANSET, 147
SCNCALIB, 148
SCNLOAD, 149
SCNLUT, 149
SCNSAVE, 149
SELECT...CASE-CASEEL SE-END SELECT, 151
SET, 151
SETBLUT, 152
SETDLUT, 152
SETDLVL, 153
SETLUT, 153
SFTBLUT, 153
SFTLUT, 154
SOBEL, 199
SPCLOSE, 157
SPLINE, 157
SSCROLL, 158
STOP, 158

STOP ON/OFF/STOP, 159
STRMODE, 160
SUB-END SUB, 161
SWAP, 161
SZ0O0M, 200
THIN, 200

TIME$ ON/OFF/STOP, 163
TROFF, 164
TRON, 164
VDWAIT, 165
VIDEOIN, 165
WDILA, 200
WDISP, 166
WEROQS, 201
WHILE-WEND, 166
WINDOW, 167
WRITE, 167
WRITE #, 168
WSCROLL, 168
WzZOO0M, 201

command-function, DATES, 73

COMMON, 67

compile work space, changes in version 2.00, 172
CONKEY ON/OFF/STOR, 187

CONSOLE, 68

console key, interrupts, 180, 187, 197

constants, 21
character, 21
character strings, 21
numeric, 22
integer, 22
long integer, 22
real number, 23

CONT, 68

conversion, numeric data, 25
COS, 69

criteria, checking with SCNJUDGE, 177, 198
CSNG, 69

CSRLIN, 69

CURSOR, 69

CvD, 70

Cvl, 71

CvL, 71

CVvsS 71

D

DATA, 72

data, measured, flow, 41
DATES, 73

DEF FN, 73

DEF FN...END DEF, 74
DEFDBL, 74

DEFINT, 74

DEFLNG, 75
DEFSNG, 75

DEFSTR, 75

DELETE, 76

DEVICE, 76

DILA, 187

DIM, 76

DIN, 77

DISPLAY, 77

display LUT, 39

DO REPEAT-LOORP, 79
DO UNTIL-LOORP, 80
DO WHILE-LOOR, 80
DO-LOOP REPEAT, 78
DO-LOOP UNTIL, 78
DO-LOOP WHILE, 79
DOUT, 80

drawing density, 46

I ndex

drawing mode, 46 FOR..TO..STEP-NEXT, 91
DSA, 81 FORMAT, 191
DSKF, 81 FRE, 91
function
ABS, 54
E AKCNVS$, 54
ASC, 55
EDGRJECT, 188 ATN, 55
ATTR, 55
EDIT, 81 AUTOLVL, 56
ELIM, 188 BATCHK, 185
BCDTOBIN, 185
ELLIPSE, 82 BINTOBCD, 186
END, 82 CAMCHK, 60
CDBL, 61
ENHANCE, 83 CHRS, 63
EOF, 83 CINT, 63
CLNG, 65
ERASE, 83 !
COs, 69
ERL, 84 CSNG, 69
EROS, 189 CSRLIN, 69
CvD, 70
ERR, 84 cvlI, 71
ERRMSG, 84 CVL, 71
Cvs 71
ERROR, 84 DIN, 77
error messages, table, 213 DSA, 81
DSKF, 81
ERROUT, 85 EOF. 83
EVENTIN, 85 ERL, 84
ERR, 84
EXIT DEF/DO/FOR/SUB, 86 EXP 87
EXP, 87 FIX, 90
: FRE, 91
essi 29 !
expressions, GETVER, 192
character, 29
. HEXS$, 97
functions, 31
. INKEY$, 100
logical, 29
: INPUTS$, 102
numeric, 29
relational, 29 INSTR, 103
' INT, 103
JISS$, 105
KACNVS$, 105
F KEXTS$, 105
KEYIN, 107
FIELD #, 87 KINSTR, 108
. . . . KLEN, 108
file delimiters, changesin version 2.00, 172 KMID$, 109
FILES, 88 KNJ$, 109
fill measurement, 50 KPOS, 110
KTYPE, 111
FILTDATA, 88, 189 LBOUND, 112
FILTER, 88 LCASES, 112
) LDATA, 112
3x3 mask filtering, 195 LEN, 113
selecting filtering functions, 177, 190 LNUM, 117
setting line filter factors, 189 LOC, 117
FILTERIN, 89 LOF 118
LOG, 118
FILTSEL, 190 LPOINT, 119
FIND, 89 LTRIMS, 120
MDATA, 121
FIX, 90 MDATAZ2, 121
FLASH, 90 MKD$, 123

222

I ndex

MKI$, 124 GOTO, 96
MKLS$, 124 ; . . .
MKSS, 125 gray-scale images, logic operations between, 193
NPIECE, 126
OCTS$, 127
PIECES, 133 H
PIN, 133
POINT, 133 HELP, 96
POS, 135
RDATA., 140 HELP ON/OFF/STOP, 96
RIGHTS$, 143 HEXS$, 97
RND, 144 HFILL, 193
RTRIMS, 145
RUNL, 146 HISTGRAM, 97
RUNL2, 198
SCNCAM, 148
SCNJUDGE, 198 |
SCNLEVEL, 148
SCNSTAND, 199 IF..GOTO-ELSE, 98
SDATA1, 149
SDATA2, 150 IF. THEN-ELSE, 98
SEARCH, 150 IF. THEN-ELSEIF-ELSE END IF, 99
SGN, 155 .
SIN, 155 image cut-off, 50
SPACES$, 156 images
SPC, 156 cameras
SQR, 158 display status, 40
STRS$, 159 measurement status, 40
STRCHK, 160 data flow, 36
STRINGS, 160 display LUT, 39
TAB, 161 filter, 39
TAN, 162 LUT, 38
UBOUND, 164 memory
UCASES, 164 display status, 41
VAL, 165 measurement status, 41
function, command VRAM, 36
MIDS$, 123 charax_:ter memory, 36
TIMES, 162 graphlc memory, 37
TIMER, 163 image memory, 37
_ shading memory, 38
functions, 31 window memory, 37
induction, 217
IMGLOAD, 99
IMGSAVE, 100
G induction functions, 217
INKEY$, 100
GATE, 91 $
INPUT, 101
GCOPY, 92
INPUT WAIT, 102
GCOPY?2, 92
INPUT#, 101
GET #, 93
INPUTS$, 102
GET@, 93 $
inspection, for character blurring/omission, 174
GETBLUT, 94
INSTR, 103
GETDLUT, 94
INT, 103
GETDLVL, 95
integer constants, 22
GETLUT, 95 format
GETMDATA, 191 decimal, 22
hexadecimal, 22
GETVER, 192 octal, 22
GMFUNC, 193 interrupts, 32
GOSUB, 95 console key, 180, 187, 197

223

I ndex

INTR ON/OFF/STOP, 104
IPL, 104, 194

J

JIS$, 105

K

KACNV$, 105
KEXT$, 105
KEY, 106

KEY LIST, 106
KEY ON/OFF/STOP, 106
KEYIN, 107
KILL, 107
KINPUT, 108
KINSTR, 108
KLEN, 108
KMID$, 109
KNJ$, 109
KPLOAD, 110
KPQOS, 110
KTYPE, 111

L

LABEL, 111

labelling, 48
renumbering labels, 176, 195

labels, 32
LBOUND, 112
LCASES, 112
LDATA, 112
LEFTS, 113

LEN, 113

LET, 113

LEVEL, 114, 195
LINE, 114

LINE INPUT, 115
LINE INPUT WAIT, 116
LINE INPUT#, 116

lines
definition, 20
format, 20
numbers, 20
statements, 20

224

LIST, 116
LNUM, 117
LOAD, 117
LOC, 117
LOCATE, 118
LOF, 118
LOG, 118

long integer constants, 22
format
decimal, 22
hexadecimal, 23
octal, 22

LPOINT, 119
LPUTIMG, 119
LSET, 120
LSORT, 120, 195
LTRIMS, 120
LUT, 38

M

mask bits, memory, 43
MASK3, 195
MASKBIT, 120
MDATA, 121
MDATAZ2, 121
MEASURE, 122

measurement
fill, 50
scan, 51
memory
binary image planes, 43
frame, 43
image, 37
shading, 38
window, 37
mask bits, 43
plane, 43
character, 36
graphic, 37

Memory Card
checking battery voltage, 180, 185
formatting, 180, 191

MENU, 122
MERGE, 122
MID$, 123
MKD$, 123
MKDIR, 124
MKI$, 124
MKL$, 124
MKSS$, 125

I ndex

MMODE, 125 POLYGON, 134
multiple-window functions POLYLINE, 134
measurements, 196 POS. 135
registering windows, 197 '
use in sample program, 204 POUT, 135
version 2.00 addition, 172 PRINT. 135
MWMEAS, 196 PRINT #, 137
MWSET, 197 PRINT USING, 136
PRINT# USING, 138
N programs, samples for version 2.00, 203
PSET, 138
NAME, 126 PUT #, 139
NEW, 126 PUT@, 139
NPIECE, 126

R

0 RANDOMIZE, 140

OCT$, 127 raw images
logic operations between, 175

ON COM GOSUB, 127 processing, 175
ON CONKEY GOSUB, 197 RDATA. 140
ON ERROR GOTO, 128 READ, 140
ON GOSUB, 130 real number constants, 23
ON GOTO, 131 format N
double-precision, 23
ON HELP GOSUB, 128 single-precision, 23
ON INTR GOSUB, 128 reference image data, checking with SCNSTAND, 178, 199
ON KEY GOSUB, 129 REM, 141
ON STOP GOSUB, 129 RENUM, 141
ON TIME$ GOSUB, 130 REPLACE, 141
OPEN(1), 131 reserved words, table, 215
OPEN(2), 132 RESTORE, 142
operations RESUME, 142
priority, 32 RETURN, 142
screen, 35
RIGHTS, 143
operators, 27
arithmetic, 27 RMDIR, 143
logical, 28 RMODE, 144
relational, 28
RND, 144
OPTION BASE, 132 .
RS-232C, standard 1/O settings, 181
RSET, 145
P RTRIM$, 145
RUN, 145
PIECES$, 133
run length, 47
PIN, 133 detailed, 48
simple, 47
planes . . .
frame, 43 using for various calculations, 179, 198
memory, 43 RUNL, 146
POINT, 133 RUNLZ2, 198

225

I ndex

S STOP ON/OFF/STOP, 159
STR$, 159
sample programs, for version 2.00, 203 STRCHK, 160
SAVE, 146 STRINGS, 160
SBANK, 146 STRMODE, 160
SCAN, 147 SUB-END SUB, 161
scan measurement, 51 SWAP, 161
SCANSET, 147 symbols, 20
SCNCALIB, 148 syntax, 19
SCNCAM, 148 SZOO0M, 200
SCNJUDGE, 198
SCNLEVEL, 148 T
SCNLOAD, 149
SCNLUT, 149 TAB, 161
SCNSAVE, 149 TAN, 162
SCNSTAND, 199 THIN, 200
scrolling, 49 TIMES, 162
Shading, 49 TIME$ ON/OFF/STOPR, 163
window, 49 TIMER, 163
SDATAL, 149 TROFE, 164
SDATA2, 150 TRON, 164
SEARCH, 150
SELECT...CASE-CASEEL SE-END SELECT, 151
SET, 151 U
SETBLUT, 152 UBOUND, 164
SETDLUT, 152 UCASES, 164
SETDLVL, 153
SETLUT, 153 V
SFTBLUT, 153
SFTLUT, 154 VAL, 165
SGN, 155 variables, 23
i _ arrays, 24
shading compensation names, 24
frame memory, 38 reserved words, 24
scrolling, 49 system, 31
shading memory, zooming, 200 type declarators, 23
SIN, 155 VDWAIT, 165
SOBEL, 199 version, obtaining with GETVER, 192
SPACES, 156 version 2.00
alphabetical listing of functions & commands, 171
SPC, 156 BCD/binary conversion, 180
SPCLOSE, 157 binary image processing, 174

binary level setting range, 182
calculations using simple run length, 179
SPLINE, 157 camera synchronization, 181
changes in specifications, 172
SQR, 158 checking menu settings, 177
SSCROLL, 158 console key interrupts, 180
filtering selection, 177
statements, 20 high-speed array operations, 175
STOP, 158 image-to-image calculations, 175

specifications, changesin version 2.00, 172

226

I ndex

loading/saving programs through RS-232C, 181 WDISP, 166
memory card operations, 180
multiple-window functions, 172 WERQGS, 201

obtaining system information, 181

raw image processing, 175 WHILE-WEND, 166

renumbering labels, 176 WINDOW. 167
standard 1/O settings, 181 '
summary of additional capabilities, 170 window memory, zooming, 201
window enlargement/reduction, 174
zooming window & shading memory, 176 windows, 44
VIDEOIN, 165 frame memory, 37
paint, 45
VRAM, 36 pattern matching, 45
character memory, 36 planes, 44
graphic memory, 37 scrolling, 49
image memory, 37 zooming, 176
shading memory, 38
window memory, 37 WRITE, 167
WRITE #, 168
W WSCROLL, 168
WDILA, 200 WZOO0M, 201

227

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. Z92-E1-2

I— Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the

previous version.

Revision code

Date

Revised content

1

October 1992

Original production

1A

March 1993

Page 38: VRAMS3 description has been changed from window memory to
image memory.

Pages 67, 68: Sentence added to COMMON example section and the program
example has been altered.

Page 76: Format of DI Mhas been corrected.
Page 77: Last sentence of DI N description has been corrected.

Page 100: Compression function specification has been corrected for
| MGSAVE.

Pages 121, 122: Description for MDATA2 has been changed.
Page 132: S parameter has been added to the table.

Page 173: Induction formulas have been changed for functions cosec! X,
coth X, tanh~1 X, sech~! X, and coth=1 X.

March 1994

Version 2.00 of the F300 Visual Inspection System (OVL) added as Part Il,
Sections 1 to 3.

Page 73: Format for the description corrected.

Page 74: DEF FN. .. END DEF example corrected.

Page 87: Middle paragraph for EXP description corrected.

Page 102: Middle paragraph for | NPUT WAI T description corrected.

Page 116: Middle paragraph for LI NE | NPUT WAI T description corrected.
LI NE | NPUT# description corrected.

Page 142: Middle paragraph for RESUME description corrected.
Page 149: Format and middle paragraph description corrected for SCNLOAD .

Page 151: Header and format for SELECT. . . CASE-CASE ELSE-END
SELECT corrected.

Page 160: Format for STRI NG$ corrected.

229

